Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import ParamAttr | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddle.vision.ops import DeformConv2D | |
from paddle.regularizer import L2Decay | |
from paddle.nn.initializer import Normal, Constant, XavierUniform | |
__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"] | |
class DeformableConvV2(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
weight_attr=None, | |
bias_attr=None, | |
lr_scale=1, | |
regularizer=None, | |
skip_quant=False, | |
dcn_bias_regularizer=L2Decay(0.), | |
dcn_bias_lr_scale=2.): | |
super(DeformableConvV2, self).__init__() | |
self.offset_channel = 2 * kernel_size**2 * groups | |
self.mask_channel = kernel_size**2 * groups | |
if bias_attr: | |
# in FCOS-DCN head, specifically need learning_rate and regularizer | |
dcn_bias_attr = ParamAttr( | |
initializer=Constant(value=0), | |
regularizer=dcn_bias_regularizer, | |
learning_rate=dcn_bias_lr_scale) | |
else: | |
# in ResNet backbone, do not need bias | |
dcn_bias_attr = False | |
self.conv_dcn = DeformConv2D( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2 * dilation, | |
dilation=dilation, | |
deformable_groups=groups, | |
weight_attr=weight_attr, | |
bias_attr=dcn_bias_attr) | |
if lr_scale == 1 and regularizer is None: | |
offset_bias_attr = ParamAttr(initializer=Constant(0.)) | |
else: | |
offset_bias_attr = ParamAttr( | |
initializer=Constant(0.), | |
learning_rate=lr_scale, | |
regularizer=regularizer) | |
self.conv_offset = nn.Conv2D( | |
in_channels, | |
groups * 3 * kernel_size**2, | |
kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
weight_attr=ParamAttr(initializer=Constant(0.0)), | |
bias_attr=offset_bias_attr) | |
if skip_quant: | |
self.conv_offset.skip_quant = True | |
def forward(self, x): | |
offset_mask = self.conv_offset(x) | |
offset, mask = paddle.split( | |
offset_mask, | |
num_or_sections=[self.offset_channel, self.mask_channel], | |
axis=1) | |
mask = F.sigmoid(mask) | |
y = self.conv_dcn(x, offset, mask=mask) | |
return y | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
dcn_groups=1, | |
is_vd_mode=False, | |
act=None, | |
is_dcn=False): | |
super(ConvBNLayer, self).__init__() | |
self.is_vd_mode = is_vd_mode | |
self._pool2d_avg = nn.AvgPool2D( | |
kernel_size=2, stride=2, padding=0, ceil_mode=True) | |
if not is_dcn: | |
self._conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
bias_attr=False) | |
else: | |
self._conv = DeformableConvV2( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=dcn_groups, #groups, | |
bias_attr=False) | |
self._batch_norm = nn.BatchNorm(out_channels, act=act) | |
def forward(self, inputs): | |
if self.is_vd_mode: | |
inputs = self._pool2d_avg(inputs) | |
y = self._conv(inputs) | |
y = self._batch_norm(y) | |
return y | |
class BottleneckBlock(nn.Layer): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride, | |
shortcut=True, | |
if_first=False, | |
is_dcn=False, ): | |
super(BottleneckBlock, self).__init__() | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
act='relu') | |
self.conv1 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=stride, | |
act='relu', | |
is_dcn=is_dcn, | |
dcn_groups=2) | |
self.conv2 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels * 4, | |
kernel_size=1, | |
act=None) | |
if not shortcut: | |
self.short = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels * 4, | |
kernel_size=1, | |
stride=1, | |
is_vd_mode=False if if_first else True) | |
self.shortcut = shortcut | |
def forward(self, inputs): | |
y = self.conv0(inputs) | |
conv1 = self.conv1(y) | |
conv2 = self.conv2(conv1) | |
if self.shortcut: | |
short = inputs | |
else: | |
short = self.short(inputs) | |
y = paddle.add(x=short, y=conv2) | |
y = F.relu(y) | |
return y | |
class BasicBlock(nn.Layer): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride, | |
shortcut=True, | |
if_first=False, ): | |
super(BasicBlock, self).__init__() | |
self.stride = stride | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=stride, | |
act='relu') | |
self.conv1 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
act=None) | |
if not shortcut: | |
self.short = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
is_vd_mode=False if if_first else True) | |
self.shortcut = shortcut | |
def forward(self, inputs): | |
y = self.conv0(inputs) | |
conv1 = self.conv1(y) | |
if self.shortcut: | |
short = inputs | |
else: | |
short = self.short(inputs) | |
y = paddle.add(x=short, y=conv1) | |
y = F.relu(y) | |
return y | |
class ResNet_vd(nn.Layer): | |
def __init__(self, | |
in_channels=3, | |
layers=50, | |
dcn_stage=None, | |
out_indices=None, | |
**kwargs): | |
super(ResNet_vd, self).__init__() | |
self.layers = layers | |
supported_layers = [18, 34, 50, 101, 152, 200] | |
assert layers in supported_layers, \ | |
"supported layers are {} but input layer is {}".format( | |
supported_layers, layers) | |
if layers == 18: | |
depth = [2, 2, 2, 2] | |
elif layers == 34 or layers == 50: | |
depth = [3, 4, 6, 3] | |
elif layers == 101: | |
depth = [3, 4, 23, 3] | |
elif layers == 152: | |
depth = [3, 8, 36, 3] | |
elif layers == 200: | |
depth = [3, 12, 48, 3] | |
num_channels = [64, 256, 512, | |
1024] if layers >= 50 else [64, 64, 128, 256] | |
num_filters = [64, 128, 256, 512] | |
self.dcn_stage = dcn_stage if dcn_stage is not None else [ | |
False, False, False, False | |
] | |
self.out_indices = out_indices if out_indices is not None else [ | |
0, 1, 2, 3 | |
] | |
self.conv1_1 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=32, | |
kernel_size=3, | |
stride=2, | |
act='relu') | |
self.conv1_2 = ConvBNLayer( | |
in_channels=32, | |
out_channels=32, | |
kernel_size=3, | |
stride=1, | |
act='relu') | |
self.conv1_3 = ConvBNLayer( | |
in_channels=32, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
act='relu') | |
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) | |
self.stages = [] | |
self.out_channels = [] | |
if layers >= 50: | |
for block in range(len(depth)): | |
block_list = [] | |
shortcut = False | |
is_dcn = self.dcn_stage[block] | |
for i in range(depth[block]): | |
bottleneck_block = self.add_sublayer( | |
'bb_%d_%d' % (block, i), | |
BottleneckBlock( | |
in_channels=num_channels[block] | |
if i == 0 else num_filters[block] * 4, | |
out_channels=num_filters[block], | |
stride=2 if i == 0 and block != 0 else 1, | |
shortcut=shortcut, | |
if_first=block == i == 0, | |
is_dcn=is_dcn)) | |
shortcut = True | |
block_list.append(bottleneck_block) | |
if block in self.out_indices: | |
self.out_channels.append(num_filters[block] * 4) | |
self.stages.append(nn.Sequential(*block_list)) | |
else: | |
for block in range(len(depth)): | |
block_list = [] | |
shortcut = False | |
for i in range(depth[block]): | |
basic_block = self.add_sublayer( | |
'bb_%d_%d' % (block, i), | |
BasicBlock( | |
in_channels=num_channels[block] | |
if i == 0 else num_filters[block], | |
out_channels=num_filters[block], | |
stride=2 if i == 0 and block != 0 else 1, | |
shortcut=shortcut, | |
if_first=block == i == 0)) | |
shortcut = True | |
block_list.append(basic_block) | |
if block in self.out_indices: | |
self.out_channels.append(num_filters[block]) | |
self.stages.append(nn.Sequential(*block_list)) | |
def forward(self, inputs): | |
y = self.conv1_1(inputs) | |
y = self.conv1_2(y) | |
y = self.conv1_3(y) | |
y = self.pool2d_max(y) | |
out = [] | |
for i, block in enumerate(self.stages): | |
y = block(y) | |
if i in self.out_indices: | |
out.append(y) | |
return out | |