Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import numpy as np | |
import cv2 | |
__all__ = ["Kie_backbone"] | |
class Encoder(nn.Layer): | |
def __init__(self, num_channels, num_filters): | |
super(Encoder, self).__init__() | |
self.conv1 = nn.Conv2D( | |
num_channels, | |
num_filters, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn1 = nn.BatchNorm(num_filters, act='relu') | |
self.conv2 = nn.Conv2D( | |
num_filters, | |
num_filters, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn2 = nn.BatchNorm(num_filters, act='relu') | |
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) | |
def forward(self, inputs): | |
x = self.conv1(inputs) | |
x = self.bn1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x_pooled = self.pool(x) | |
return x, x_pooled | |
class Decoder(nn.Layer): | |
def __init__(self, num_channels, num_filters): | |
super(Decoder, self).__init__() | |
self.conv1 = nn.Conv2D( | |
num_channels, | |
num_filters, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn1 = nn.BatchNorm(num_filters, act='relu') | |
self.conv2 = nn.Conv2D( | |
num_filters, | |
num_filters, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn2 = nn.BatchNorm(num_filters, act='relu') | |
self.conv0 = nn.Conv2D( | |
num_channels, | |
num_filters, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias_attr=False) | |
self.bn0 = nn.BatchNorm(num_filters, act='relu') | |
def forward(self, inputs_prev, inputs): | |
x = self.conv0(inputs) | |
x = self.bn0(x) | |
x = paddle.nn.functional.interpolate( | |
x, scale_factor=2, mode='bilinear', align_corners=False) | |
x = paddle.concat([inputs_prev, x], axis=1) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
return x | |
class UNet(nn.Layer): | |
def __init__(self): | |
super(UNet, self).__init__() | |
self.down1 = Encoder(num_channels=3, num_filters=16) | |
self.down2 = Encoder(num_channels=16, num_filters=32) | |
self.down3 = Encoder(num_channels=32, num_filters=64) | |
self.down4 = Encoder(num_channels=64, num_filters=128) | |
self.down5 = Encoder(num_channels=128, num_filters=256) | |
self.up1 = Decoder(32, 16) | |
self.up2 = Decoder(64, 32) | |
self.up3 = Decoder(128, 64) | |
self.up4 = Decoder(256, 128) | |
self.out_channels = 16 | |
def forward(self, inputs): | |
x1, _ = self.down1(inputs) | |
_, x2 = self.down2(x1) | |
_, x3 = self.down3(x2) | |
_, x4 = self.down4(x3) | |
_, x5 = self.down5(x4) | |
x = self.up4(x4, x5) | |
x = self.up3(x3, x) | |
x = self.up2(x2, x) | |
x = self.up1(x1, x) | |
return x | |
class Kie_backbone(nn.Layer): | |
def __init__(self, in_channels, **kwargs): | |
super(Kie_backbone, self).__init__() | |
self.out_channels = 16 | |
self.img_feat = UNet() | |
self.maxpool = nn.MaxPool2D(kernel_size=7) | |
def bbox2roi(self, bbox_list): | |
rois_list = [] | |
rois_num = [] | |
for img_id, bboxes in enumerate(bbox_list): | |
rois_num.append(bboxes.shape[0]) | |
rois_list.append(bboxes) | |
rois = paddle.concat(rois_list, 0) | |
rois_num = paddle.to_tensor(rois_num, dtype='int32') | |
return rois, rois_num | |
def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size): | |
img, relations, texts, gt_bboxes, tag, img_size = img.numpy( | |
), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy( | |
).tolist(), img_size.numpy() | |
temp_relations, temp_texts, temp_gt_bboxes = [], [], [] | |
h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1])) | |
img = paddle.to_tensor(img[:, :, :h, :w]) | |
batch = len(tag) | |
for i in range(batch): | |
num, recoder_len = tag[i][0], tag[i][1] | |
temp_relations.append( | |
paddle.to_tensor( | |
relations[i, :num, :num, :], dtype='float32')) | |
temp_texts.append( | |
paddle.to_tensor( | |
texts[i, :num, :recoder_len], dtype='float32')) | |
temp_gt_bboxes.append( | |
paddle.to_tensor( | |
gt_bboxes[i, :num, ...], dtype='float32')) | |
return img, temp_relations, temp_texts, temp_gt_bboxes | |
def forward(self, inputs): | |
img = inputs[0] | |
relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[ | |
2], inputs[3], inputs[5], inputs[-1] | |
img, relations, texts, gt_bboxes = self.pre_process( | |
img, relations, texts, gt_bboxes, tag, img_size) | |
x = self.img_feat(img) | |
boxes, rois_num = self.bbox2roi(gt_bboxes) | |
feats = paddle.vision.ops.roi_align( | |
x, boxes, spatial_scale=1.0, output_size=7, boxes_num=rois_num) | |
feats = self.maxpool(feats).squeeze(-1).squeeze(-1) | |
return [relations, texts, feats] | |