Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/LBH1024/CAN/models/densenet.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
class Bottleneck(nn.Layer): | |
def __init__(self, nChannels, growthRate, use_dropout): | |
super(Bottleneck, self).__init__() | |
interChannels = 4 * growthRate | |
self.bn1 = nn.BatchNorm2D(interChannels) | |
self.conv1 = nn.Conv2D( | |
nChannels, interChannels, kernel_size=1, | |
bias_attr=None) # Xavier initialization | |
self.bn2 = nn.BatchNorm2D(growthRate) | |
self.conv2 = nn.Conv2D( | |
interChannels, growthRate, kernel_size=3, padding=1, | |
bias_attr=None) # Xavier initialization | |
self.use_dropout = use_dropout | |
self.dropout = nn.Dropout(p=0.2) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
if self.use_dropout: | |
out = self.dropout(out) | |
out = F.relu(self.bn2(self.conv2(out))) | |
if self.use_dropout: | |
out = self.dropout(out) | |
out = paddle.concat([x, out], 1) | |
return out | |
class SingleLayer(nn.Layer): | |
def __init__(self, nChannels, growthRate, use_dropout): | |
super(SingleLayer, self).__init__() | |
self.bn1 = nn.BatchNorm2D(nChannels) | |
self.conv1 = nn.Conv2D( | |
nChannels, growthRate, kernel_size=3, padding=1, bias_attr=False) | |
self.use_dropout = use_dropout | |
self.dropout = nn.Dropout(p=0.2) | |
def forward(self, x): | |
out = self.conv1(F.relu(x)) | |
if self.use_dropout: | |
out = self.dropout(out) | |
out = paddle.concat([x, out], 1) | |
return out | |
class Transition(nn.Layer): | |
def __init__(self, nChannels, out_channels, use_dropout): | |
super(Transition, self).__init__() | |
self.bn1 = nn.BatchNorm2D(out_channels) | |
self.conv1 = nn.Conv2D( | |
nChannels, out_channels, kernel_size=1, bias_attr=False) | |
self.use_dropout = use_dropout | |
self.dropout = nn.Dropout(p=0.2) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
if self.use_dropout: | |
out = self.dropout(out) | |
out = F.avg_pool2d(out, 2, ceil_mode=True, exclusive=False) | |
return out | |
class DenseNet(nn.Layer): | |
def __init__(self, growthRate, reduction, bottleneck, use_dropout, | |
input_channel, **kwargs): | |
super(DenseNet, self).__init__() | |
nDenseBlocks = 16 | |
nChannels = 2 * growthRate | |
self.conv1 = nn.Conv2D( | |
input_channel, | |
nChannels, | |
kernel_size=7, | |
padding=3, | |
stride=2, | |
bias_attr=False) | |
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, | |
bottleneck, use_dropout) | |
nChannels += nDenseBlocks * growthRate | |
out_channels = int(math.floor(nChannels * reduction)) | |
self.trans1 = Transition(nChannels, out_channels, use_dropout) | |
nChannels = out_channels | |
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, | |
bottleneck, use_dropout) | |
nChannels += nDenseBlocks * growthRate | |
out_channels = int(math.floor(nChannels * reduction)) | |
self.trans2 = Transition(nChannels, out_channels, use_dropout) | |
nChannels = out_channels | |
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, | |
bottleneck, use_dropout) | |
self.out_channels = out_channels | |
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck, | |
use_dropout): | |
layers = [] | |
for i in range(int(nDenseBlocks)): | |
if bottleneck: | |
layers.append(Bottleneck(nChannels, growthRate, use_dropout)) | |
else: | |
layers.append(SingleLayer(nChannels, growthRate, use_dropout)) | |
nChannels += growthRate | |
return nn.Sequential(*layers) | |
def forward(self, inputs): | |
x, x_m, y = inputs | |
out = self.conv1(x) | |
out = F.relu(out) | |
out = F.max_pool2d(out, 2, ceil_mode=True) | |
out = self.dense1(out) | |
out = self.trans1(out) | |
out = self.dense2(out) | |
out = self.trans2(out) | |
out = self.dense3(out) | |
return out, x_m, y | |