Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import numpy as np | |
import paddle | |
from paddle import ParamAttr, reshape, transpose | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout | |
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D | |
from paddle.nn.initializer import KaimingNormal | |
from paddle.regularizer import L2Decay | |
from paddle.nn.functional import hardswish, hardsigmoid | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
num_channels, | |
filter_size, | |
num_filters, | |
stride, | |
padding, | |
channels=None, | |
num_groups=1, | |
act='hard_swish'): | |
super(ConvBNLayer, self).__init__() | |
self._conv = Conv2D( | |
in_channels=num_channels, | |
out_channels=num_filters, | |
kernel_size=filter_size, | |
stride=stride, | |
padding=padding, | |
groups=num_groups, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False) | |
self._batch_norm = BatchNorm( | |
num_filters, | |
act=act, | |
param_attr=ParamAttr(regularizer=L2Decay(0.0)), | |
bias_attr=ParamAttr(regularizer=L2Decay(0.0))) | |
def forward(self, inputs): | |
y = self._conv(inputs) | |
y = self._batch_norm(y) | |
return y | |
class DepthwiseSeparable(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_filters1, | |
num_filters2, | |
num_groups, | |
stride, | |
scale, | |
dw_size=3, | |
padding=1, | |
use_se=False): | |
super(DepthwiseSeparable, self).__init__() | |
self.use_se = use_se | |
self._depthwise_conv = ConvBNLayer( | |
num_channels=num_channels, | |
num_filters=int(num_filters1 * scale), | |
filter_size=dw_size, | |
stride=stride, | |
padding=padding, | |
num_groups=int(num_groups * scale)) | |
if use_se: | |
self._se = SEModule(int(num_filters1 * scale)) | |
self._pointwise_conv = ConvBNLayer( | |
num_channels=int(num_filters1 * scale), | |
filter_size=1, | |
num_filters=int(num_filters2 * scale), | |
stride=1, | |
padding=0) | |
def forward(self, inputs): | |
y = self._depthwise_conv(inputs) | |
if self.use_se: | |
y = self._se(y) | |
y = self._pointwise_conv(y) | |
return y | |
class MobileNetV1Enhance(nn.Layer): | |
def __init__(self, | |
in_channels=3, | |
scale=0.5, | |
last_conv_stride=1, | |
last_pool_type='max', | |
last_pool_kernel_size=[3, 2], | |
**kwargs): | |
super().__init__() | |
self.scale = scale | |
self.block_list = [] | |
self.conv1 = ConvBNLayer( | |
num_channels=3, | |
filter_size=3, | |
channels=3, | |
num_filters=int(32 * scale), | |
stride=2, | |
padding=1) | |
conv2_1 = DepthwiseSeparable( | |
num_channels=int(32 * scale), | |
num_filters1=32, | |
num_filters2=64, | |
num_groups=32, | |
stride=1, | |
scale=scale) | |
self.block_list.append(conv2_1) | |
conv2_2 = DepthwiseSeparable( | |
num_channels=int(64 * scale), | |
num_filters1=64, | |
num_filters2=128, | |
num_groups=64, | |
stride=1, | |
scale=scale) | |
self.block_list.append(conv2_2) | |
conv3_1 = DepthwiseSeparable( | |
num_channels=int(128 * scale), | |
num_filters1=128, | |
num_filters2=128, | |
num_groups=128, | |
stride=1, | |
scale=scale) | |
self.block_list.append(conv3_1) | |
conv3_2 = DepthwiseSeparable( | |
num_channels=int(128 * scale), | |
num_filters1=128, | |
num_filters2=256, | |
num_groups=128, | |
stride=(2, 1), | |
scale=scale) | |
self.block_list.append(conv3_2) | |
conv4_1 = DepthwiseSeparable( | |
num_channels=int(256 * scale), | |
num_filters1=256, | |
num_filters2=256, | |
num_groups=256, | |
stride=1, | |
scale=scale) | |
self.block_list.append(conv4_1) | |
conv4_2 = DepthwiseSeparable( | |
num_channels=int(256 * scale), | |
num_filters1=256, | |
num_filters2=512, | |
num_groups=256, | |
stride=(2, 1), | |
scale=scale) | |
self.block_list.append(conv4_2) | |
for _ in range(5): | |
conv5 = DepthwiseSeparable( | |
num_channels=int(512 * scale), | |
num_filters1=512, | |
num_filters2=512, | |
num_groups=512, | |
stride=1, | |
dw_size=5, | |
padding=2, | |
scale=scale, | |
use_se=False) | |
self.block_list.append(conv5) | |
conv5_6 = DepthwiseSeparable( | |
num_channels=int(512 * scale), | |
num_filters1=512, | |
num_filters2=1024, | |
num_groups=512, | |
stride=(2, 1), | |
dw_size=5, | |
padding=2, | |
scale=scale, | |
use_se=True) | |
self.block_list.append(conv5_6) | |
conv6 = DepthwiseSeparable( | |
num_channels=int(1024 * scale), | |
num_filters1=1024, | |
num_filters2=1024, | |
num_groups=1024, | |
stride=last_conv_stride, | |
dw_size=5, | |
padding=2, | |
use_se=True, | |
scale=scale) | |
self.block_list.append(conv6) | |
self.block_list = nn.Sequential(*self.block_list) | |
if last_pool_type == 'avg': | |
self.pool = nn.AvgPool2D( | |
kernel_size=last_pool_kernel_size, | |
stride=last_pool_kernel_size, | |
padding=0) | |
else: | |
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | |
self.out_channels = int(1024 * scale) | |
def forward(self, inputs): | |
y = self.conv1(inputs) | |
y = self.block_list(y) | |
y = self.pool(y) | |
return y | |
class SEModule(nn.Layer): | |
def __init__(self, channel, reduction=4): | |
super(SEModule, self).__init__() | |
self.avg_pool = AdaptiveAvgPool2D(1) | |
self.conv1 = Conv2D( | |
in_channels=channel, | |
out_channels=channel // reduction, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
weight_attr=ParamAttr(), | |
bias_attr=ParamAttr()) | |
self.conv2 = Conv2D( | |
in_channels=channel // reduction, | |
out_channels=channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
weight_attr=ParamAttr(), | |
bias_attr=ParamAttr()) | |
def forward(self, inputs): | |
outputs = self.avg_pool(inputs) | |
outputs = self.conv1(outputs) | |
outputs = F.relu(outputs) | |
outputs = self.conv2(outputs) | |
outputs = hardsigmoid(outputs) | |
return paddle.multiply(x=inputs, y=outputs) | |