Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/FangShancheng/ABINet/tree/main/modules | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import ParamAttr | |
from paddle.nn.initializer import KaimingNormal | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
import numpy as np | |
import math | |
__all__ = ["ResNet45"] | |
def conv1x1(in_planes, out_planes, stride=1): | |
return nn.Conv2D( | |
in_planes, | |
out_planes, | |
kernel_size=1, | |
stride=1, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False) | |
def conv3x3(in_channel, out_channel, stride=1): | |
return nn.Conv2D( | |
in_channel, | |
out_channel, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False) | |
class BasicBlock(nn.Layer): | |
expansion = 1 | |
def __init__(self, in_channels, channels, stride=1, downsample=None): | |
super().__init__() | |
self.conv1 = conv1x1(in_channels, channels) | |
self.bn1 = nn.BatchNorm2D(channels) | |
self.relu = nn.ReLU() | |
self.conv2 = conv3x3(channels, channels, stride) | |
self.bn2 = nn.BatchNorm2D(channels) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet45(nn.Layer): | |
def __init__(self, | |
in_channels=3, | |
block=BasicBlock, | |
layers=[3, 4, 6, 6, 3], | |
strides=[2, 1, 2, 1, 1]): | |
self.inplanes = 32 | |
super(ResNet45, self).__init__() | |
self.conv1 = nn.Conv2D( | |
in_channels, | |
32, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False) | |
self.bn1 = nn.BatchNorm2D(32) | |
self.relu = nn.ReLU() | |
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) | |
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) | |
self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) | |
self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) | |
self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) | |
self.out_channels = 512 | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
# downsample = True | |
downsample = nn.Sequential( | |
nn.Conv2D( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False), | |
nn.BatchNorm2D(planes * block.expansion), ) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.layer5(x) | |
return x | |