Spaces:
Runtime error
Runtime error
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
#Licensed under the Apache License, Version 2.0 (the "License"); | |
#you may not use this file except in compliance with the License. | |
#You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
#Unless required by applicable law or agreed to in writing, software | |
#distributed under the License is distributed on an "AS IS" BASIS, | |
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
#See the License for the specific language governing permissions and | |
#limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from paddle import nn, ParamAttr | |
from paddle.nn import functional as F | |
import paddle | |
import numpy as np | |
__all__ = ["ResNetFPN"] | |
class ResNetFPN(nn.Layer): | |
def __init__(self, in_channels=1, layers=50, **kwargs): | |
super(ResNetFPN, self).__init__() | |
supported_layers = { | |
18: { | |
'depth': [2, 2, 2, 2], | |
'block_class': BasicBlock | |
}, | |
34: { | |
'depth': [3, 4, 6, 3], | |
'block_class': BasicBlock | |
}, | |
50: { | |
'depth': [3, 4, 6, 3], | |
'block_class': BottleneckBlock | |
}, | |
101: { | |
'depth': [3, 4, 23, 3], | |
'block_class': BottleneckBlock | |
}, | |
152: { | |
'depth': [3, 8, 36, 3], | |
'block_class': BottleneckBlock | |
} | |
} | |
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)] | |
num_filters = [64, 128, 256, 512] | |
self.depth = supported_layers[layers]['depth'] | |
self.F = [] | |
self.conv = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=64, | |
kernel_size=7, | |
stride=2, | |
act="relu", | |
name="conv1") | |
self.block_list = [] | |
in_ch = 64 | |
if layers >= 50: | |
for block in range(len(self.depth)): | |
for i in range(self.depth[block]): | |
if layers in [101, 152] and block == 2: | |
if i == 0: | |
conv_name = "res" + str(block + 2) + "a" | |
else: | |
conv_name = "res" + str(block + 2) + "b" + str(i) | |
else: | |
conv_name = "res" + str(block + 2) + chr(97 + i) | |
block_list = self.add_sublayer( | |
"bottleneckBlock_{}_{}".format(block, i), | |
BottleneckBlock( | |
in_channels=in_ch, | |
out_channels=num_filters[block], | |
stride=stride_list[block] if i == 0 else 1, | |
name=conv_name)) | |
in_ch = num_filters[block] * 4 | |
self.block_list.append(block_list) | |
self.F.append(block_list) | |
else: | |
for block in range(len(self.depth)): | |
for i in range(self.depth[block]): | |
conv_name = "res" + str(block + 2) + chr(97 + i) | |
if i == 0 and block != 0: | |
stride = (2, 1) | |
else: | |
stride = (1, 1) | |
basic_block = self.add_sublayer( | |
conv_name, | |
BasicBlock( | |
in_channels=in_ch, | |
out_channels=num_filters[block], | |
stride=stride_list[block] if i == 0 else 1, | |
is_first=block == i == 0, | |
name=conv_name)) | |
in_ch = basic_block.out_channels | |
self.block_list.append(basic_block) | |
out_ch_list = [in_ch // 4, in_ch // 2, in_ch] | |
self.base_block = [] | |
self.conv_trans = [] | |
self.bn_block = [] | |
for i in [-2, -3]: | |
in_channels = out_ch_list[i + 1] + out_ch_list[i] | |
self.base_block.append( | |
self.add_sublayer( | |
"F_{}_base_block_0".format(i), | |
nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_ch_list[i], | |
kernel_size=1, | |
weight_attr=ParamAttr(trainable=True), | |
bias_attr=ParamAttr(trainable=True)))) | |
self.base_block.append( | |
self.add_sublayer( | |
"F_{}_base_block_1".format(i), | |
nn.Conv2D( | |
in_channels=out_ch_list[i], | |
out_channels=out_ch_list[i], | |
kernel_size=3, | |
padding=1, | |
weight_attr=ParamAttr(trainable=True), | |
bias_attr=ParamAttr(trainable=True)))) | |
self.base_block.append( | |
self.add_sublayer( | |
"F_{}_base_block_2".format(i), | |
nn.BatchNorm( | |
num_channels=out_ch_list[i], | |
act="relu", | |
param_attr=ParamAttr(trainable=True), | |
bias_attr=ParamAttr(trainable=True)))) | |
self.base_block.append( | |
self.add_sublayer( | |
"F_{}_base_block_3".format(i), | |
nn.Conv2D( | |
in_channels=out_ch_list[i], | |
out_channels=512, | |
kernel_size=1, | |
bias_attr=ParamAttr(trainable=True), | |
weight_attr=ParamAttr(trainable=True)))) | |
self.out_channels = 512 | |
def __call__(self, x): | |
x = self.conv(x) | |
fpn_list = [] | |
F = [] | |
for i in range(len(self.depth)): | |
fpn_list.append(np.sum(self.depth[:i + 1])) | |
for i, block in enumerate(self.block_list): | |
x = block(x) | |
for number in fpn_list: | |
if i + 1 == number: | |
F.append(x) | |
base = F[-1] | |
j = 0 | |
for i, block in enumerate(self.base_block): | |
if i % 3 == 0 and i < 6: | |
j = j + 1 | |
b, c, w, h = F[-j - 1].shape | |
if [w, h] == list(base.shape[2:]): | |
base = base | |
else: | |
base = self.conv_trans[j - 1](base) | |
base = self.bn_block[j - 1](base) | |
base = paddle.concat([base, F[-j - 1]], axis=1) | |
base = block(base) | |
return base | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=2 if stride == (1, 1) else kernel_size, | |
dilation=2 if stride == (1, 1) else 1, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'), | |
bias_attr=False, ) | |
if name == "conv1": | |
bn_name = "bn_" + name | |
else: | |
bn_name = "bn" + name[3:] | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name=name + '.output.1.w_0'), | |
bias_attr=ParamAttr(name=name + '.output.1.b_0'), | |
moving_mean_name=bn_name + "_mean", | |
moving_variance_name=bn_name + "_variance") | |
def __call__(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class ShortCut(nn.Layer): | |
def __init__(self, in_channels, out_channels, stride, name, is_first=False): | |
super(ShortCut, self).__init__() | |
self.use_conv = True | |
if in_channels != out_channels or stride != 1 or is_first == True: | |
if stride == (1, 1): | |
self.conv = ConvBNLayer( | |
in_channels, out_channels, 1, 1, name=name) | |
else: # stride==(2,2) | |
self.conv = ConvBNLayer( | |
in_channels, out_channels, 1, stride, name=name) | |
else: | |
self.use_conv = False | |
def forward(self, x): | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class BottleneckBlock(nn.Layer): | |
def __init__(self, in_channels, out_channels, stride, name): | |
super(BottleneckBlock, self).__init__() | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
act='relu', | |
name=name + "_branch2a") | |
self.conv1 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=stride, | |
act='relu', | |
name=name + "_branch2b") | |
self.conv2 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels * 4, | |
kernel_size=1, | |
act=None, | |
name=name + "_branch2c") | |
self.short = ShortCut( | |
in_channels=in_channels, | |
out_channels=out_channels * 4, | |
stride=stride, | |
is_first=False, | |
name=name + "_branch1") | |
self.out_channels = out_channels * 4 | |
def forward(self, x): | |
y = self.conv0(x) | |
y = self.conv1(y) | |
y = self.conv2(y) | |
y = y + self.short(x) | |
y = F.relu(y) | |
return y | |
class BasicBlock(nn.Layer): | |
def __init__(self, in_channels, out_channels, stride, name, is_first): | |
super(BasicBlock, self).__init__() | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
act='relu', | |
stride=stride, | |
name=name + "_branch2a") | |
self.conv1 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
act=None, | |
name=name + "_branch2b") | |
self.short = ShortCut( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
is_first=is_first, | |
name=name + "_branch1") | |
self.out_channels = out_channels | |
def forward(self, x): | |
y = self.conv0(x) | |
y = self.conv1(y) | |
y = y + self.short(x) | |
return F.relu(y) | |