Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_rcg/models/backbones/ResNetRFL.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
import paddle.nn as nn | |
from paddle.nn.initializer import TruncatedNormal, Constant, Normal, KaimingNormal | |
kaiming_init_ = KaimingNormal() | |
zeros_ = Constant(value=0.) | |
ones_ = Constant(value=1.) | |
class BasicBlock(nn.Layer): | |
"""Res-net Basic Block""" | |
expansion = 1 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
norm_type='BN', | |
**kwargs): | |
""" | |
Args: | |
inplanes (int): input channel | |
planes (int): channels of the middle feature | |
stride (int): stride of the convolution | |
downsample (int): type of the down_sample | |
norm_type (str): type of the normalization | |
**kwargs (None): backup parameter | |
""" | |
super(BasicBlock, self).__init__() | |
self.conv1 = self._conv3x3(inplanes, planes) | |
self.bn1 = nn.BatchNorm(planes) | |
self.conv2 = self._conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm(planes) | |
self.relu = nn.ReLU() | |
self.downsample = downsample | |
self.stride = stride | |
def _conv3x3(self, in_planes, out_planes, stride=1): | |
return nn.Conv2D( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias_attr=False) | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNetRFL(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels=512, | |
use_cnt=True, | |
use_seq=True): | |
""" | |
Args: | |
in_channels (int): input channel | |
out_channels (int): output channel | |
""" | |
super(ResNetRFL, self).__init__() | |
assert use_cnt or use_seq | |
self.use_cnt, self.use_seq = use_cnt, use_seq | |
self.backbone = RFLBase(in_channels) | |
self.out_channels = out_channels | |
self.out_channels_block = [ | |
int(self.out_channels / 4), int(self.out_channels / 2), | |
self.out_channels, self.out_channels | |
] | |
block = BasicBlock | |
layers = [1, 2, 5, 3] | |
self.inplanes = int(self.out_channels // 2) | |
self.relu = nn.ReLU() | |
if self.use_seq: | |
self.maxpool3 = nn.MaxPool2D( | |
kernel_size=2, stride=(2, 1), padding=(0, 1)) | |
self.layer3 = self._make_layer( | |
block, self.out_channels_block[2], layers[2], stride=1) | |
self.conv3 = nn.Conv2D( | |
self.out_channels_block[2], | |
self.out_channels_block[2], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn3 = nn.BatchNorm(self.out_channels_block[2]) | |
self.layer4 = self._make_layer( | |
block, self.out_channels_block[3], layers[3], stride=1) | |
self.conv4_1 = nn.Conv2D( | |
self.out_channels_block[3], | |
self.out_channels_block[3], | |
kernel_size=2, | |
stride=(2, 1), | |
padding=(0, 1), | |
bias_attr=False) | |
self.bn4_1 = nn.BatchNorm(self.out_channels_block[3]) | |
self.conv4_2 = nn.Conv2D( | |
self.out_channels_block[3], | |
self.out_channels_block[3], | |
kernel_size=2, | |
stride=1, | |
padding=0, | |
bias_attr=False) | |
self.bn4_2 = nn.BatchNorm(self.out_channels_block[3]) | |
if self.use_cnt: | |
self.inplanes = int(self.out_channels // 2) | |
self.v_maxpool3 = nn.MaxPool2D( | |
kernel_size=2, stride=(2, 1), padding=(0, 1)) | |
self.v_layer3 = self._make_layer( | |
block, self.out_channels_block[2], layers[2], stride=1) | |
self.v_conv3 = nn.Conv2D( | |
self.out_channels_block[2], | |
self.out_channels_block[2], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.v_bn3 = nn.BatchNorm(self.out_channels_block[2]) | |
self.v_layer4 = self._make_layer( | |
block, self.out_channels_block[3], layers[3], stride=1) | |
self.v_conv4_1 = nn.Conv2D( | |
self.out_channels_block[3], | |
self.out_channels_block[3], | |
kernel_size=2, | |
stride=(2, 1), | |
padding=(0, 1), | |
bias_attr=False) | |
self.v_bn4_1 = nn.BatchNorm(self.out_channels_block[3]) | |
self.v_conv4_2 = nn.Conv2D( | |
self.out_channels_block[3], | |
self.out_channels_block[3], | |
kernel_size=2, | |
stride=1, | |
padding=0, | |
bias_attr=False) | |
self.v_bn4_2 = nn.BatchNorm(self.out_channels_block[3]) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2D( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias_attr=False), | |
nn.BatchNorm(planes * block.expansion), ) | |
layers = list() | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, inputs): | |
x_1 = self.backbone(inputs) | |
if self.use_cnt: | |
v_x = self.v_maxpool3(x_1) | |
v_x = self.v_layer3(v_x) | |
v_x = self.v_conv3(v_x) | |
v_x = self.v_bn3(v_x) | |
visual_feature_2 = self.relu(v_x) | |
v_x = self.v_layer4(visual_feature_2) | |
v_x = self.v_conv4_1(v_x) | |
v_x = self.v_bn4_1(v_x) | |
v_x = self.relu(v_x) | |
v_x = self.v_conv4_2(v_x) | |
v_x = self.v_bn4_2(v_x) | |
visual_feature_3 = self.relu(v_x) | |
else: | |
visual_feature_3 = None | |
if self.use_seq: | |
x = self.maxpool3(x_1) | |
x = self.layer3(x) | |
x = self.conv3(x) | |
x = self.bn3(x) | |
x_2 = self.relu(x) | |
x = self.layer4(x_2) | |
x = self.conv4_1(x) | |
x = self.bn4_1(x) | |
x = self.relu(x) | |
x = self.conv4_2(x) | |
x = self.bn4_2(x) | |
x_3 = self.relu(x) | |
else: | |
x_3 = None | |
return [visual_feature_3, x_3] | |
class ResNetBase(nn.Layer): | |
def __init__(self, in_channels, out_channels, block, layers): | |
super(ResNetBase, self).__init__() | |
self.out_channels_block = [ | |
int(out_channels / 4), int(out_channels / 2), out_channels, | |
out_channels | |
] | |
self.inplanes = int(out_channels / 8) | |
self.conv0_1 = nn.Conv2D( | |
in_channels, | |
int(out_channels / 16), | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn0_1 = nn.BatchNorm(int(out_channels / 16)) | |
self.conv0_2 = nn.Conv2D( | |
int(out_channels / 16), | |
self.inplanes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn0_2 = nn.BatchNorm(self.inplanes) | |
self.relu = nn.ReLU() | |
self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | |
self.layer1 = self._make_layer(block, self.out_channels_block[0], | |
layers[0]) | |
self.conv1 = nn.Conv2D( | |
self.out_channels_block[0], | |
self.out_channels_block[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn1 = nn.BatchNorm(self.out_channels_block[0]) | |
self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | |
self.layer2 = self._make_layer( | |
block, self.out_channels_block[1], layers[1], stride=1) | |
self.conv2 = nn.Conv2D( | |
self.out_channels_block[1], | |
self.out_channels_block[1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias_attr=False) | |
self.bn2 = nn.BatchNorm(self.out_channels_block[1]) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2D( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias_attr=False), | |
nn.BatchNorm(planes * block.expansion), ) | |
layers = list() | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv0_1(x) | |
x = self.bn0_1(x) | |
x = self.relu(x) | |
x = self.conv0_2(x) | |
x = self.bn0_2(x) | |
x = self.relu(x) | |
x = self.maxpool1(x) | |
x = self.layer1(x) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool2(x) | |
x = self.layer2(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
return x | |
class RFLBase(nn.Layer): | |
""" Reciprocal feature learning share backbone network""" | |
def __init__(self, in_channels, out_channels=512): | |
super(RFLBase, self).__init__() | |
self.ConvNet = ResNetBase(in_channels, out_channels, BasicBlock, | |
[1, 2, 5, 3]) | |
def forward(self, inputs): | |
return self.ConvNet(inputs) | |