Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/open-mmlab/mmocr/blob/1.x/mmocr/models/textrecog/backbones/shallow_cnn.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import numpy as np | |
import paddle | |
from paddle import ParamAttr | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddle.nn import MaxPool2D | |
from paddle.nn.initializer import KaimingNormal, Uniform, Constant | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
num_channels, | |
filter_size, | |
num_filters, | |
stride, | |
padding, | |
num_groups=1): | |
super(ConvBNLayer, self).__init__() | |
self.conv = nn.Conv2D( | |
in_channels=num_channels, | |
out_channels=num_filters, | |
kernel_size=filter_size, | |
stride=stride, | |
padding=padding, | |
groups=num_groups, | |
weight_attr=ParamAttr(initializer=KaimingNormal()), | |
bias_attr=False) | |
self.bn = nn.BatchNorm2D( | |
num_filters, | |
weight_attr=ParamAttr(initializer=Uniform(0, 1)), | |
bias_attr=ParamAttr(initializer=Constant(0))) | |
self.relu = nn.ReLU() | |
def forward(self, inputs): | |
y = self.conv(inputs) | |
y = self.bn(y) | |
y = self.relu(y) | |
return y | |
class ShallowCNN(nn.Layer): | |
def __init__(self, in_channels=1, hidden_dim=512): | |
super().__init__() | |
assert isinstance(in_channels, int) | |
assert isinstance(hidden_dim, int) | |
self.conv1 = ConvBNLayer( | |
in_channels, 3, hidden_dim // 2, stride=1, padding=1) | |
self.conv2 = ConvBNLayer( | |
hidden_dim // 2, 3, hidden_dim, stride=1, padding=1) | |
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | |
self.out_channels = hidden_dim | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.pool(x) | |
x = self.conv2(x) | |
x = self.pool(x) | |
return x | |