Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from paddle import ParamAttr | |
from paddle.nn.initializer import KaimingNormal | |
import numpy as np | |
import paddle | |
import paddle.nn as nn | |
from paddle.nn.initializer import TruncatedNormal, Constant, Normal | |
trunc_normal_ = TruncatedNormal(std=.02) | |
normal_ = Normal | |
zeros_ = Constant(value=0.) | |
ones_ = Constant(value=1.) | |
def drop_path(x, drop_prob=0., training=False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype) | |
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1) | |
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype) | |
random_tensor = paddle.floor(random_tensor) # binarize | |
output = x.divide(keep_prob) * random_tensor | |
return output | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=0, | |
bias_attr=False, | |
groups=1, | |
act=nn.GELU): | |
super().__init__() | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
weight_attr=paddle.ParamAttr( | |
initializer=nn.initializer.KaimingUniform()), | |
bias_attr=bias_attr) | |
self.norm = nn.BatchNorm2D(out_channels) | |
self.act = act() | |
def forward(self, inputs): | |
out = self.conv(inputs) | |
out = self.norm(out) | |
out = self.act(out) | |
return out | |
class DropPath(nn.Layer): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Identity(nn.Layer): | |
def __init__(self): | |
super(Identity, self).__init__() | |
def forward(self, input): | |
return input | |
class Mlp(nn.Layer): | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class ConvMixer(nn.Layer): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
HW=[8, 25], | |
local_k=[3, 3], ): | |
super().__init__() | |
self.HW = HW | |
self.dim = dim | |
self.local_mixer = nn.Conv2D( | |
dim, | |
dim, | |
local_k, | |
1, [local_k[0] // 2, local_k[1] // 2], | |
groups=num_heads, | |
weight_attr=ParamAttr(initializer=KaimingNormal())) | |
def forward(self, x): | |
h = self.HW[0] | |
w = self.HW[1] | |
x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w]) | |
x = self.local_mixer(x) | |
x = x.flatten(2).transpose([0, 2, 1]) | |
return x | |
class Attention(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads=8, | |
mixer='Global', | |
HW=None, | |
local_k=[7, 11], | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0., | |
proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
self.dim = dim | |
self.head_dim = dim // num_heads | |
self.scale = qk_scale or self.head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.HW = HW | |
if HW is not None: | |
H = HW[0] | |
W = HW[1] | |
self.N = H * W | |
self.C = dim | |
if mixer == 'Local' and HW is not None: | |
hk = local_k[0] | |
wk = local_k[1] | |
mask = paddle.ones([H * W, H + hk - 1, W + wk - 1], dtype='float32') | |
for h in range(0, H): | |
for w in range(0, W): | |
mask[h * W + w, h:h + hk, w:w + wk] = 0. | |
mask_paddle = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // | |
2].flatten(1) | |
mask_inf = paddle.full([H * W, H * W], '-inf', dtype='float32') | |
mask = paddle.where(mask_paddle < 1, mask_paddle, mask_inf) | |
self.mask = mask.unsqueeze([0, 1]) | |
self.mixer = mixer | |
def forward(self, x): | |
qkv = self.qkv(x).reshape( | |
(0, -1, 3, self.num_heads, self.head_dim)).transpose( | |
(2, 0, 3, 1, 4)) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) | |
if self.mixer == 'Local': | |
attn += self.mask | |
attn = nn.functional.softmax(attn, axis=-1) | |
attn = self.attn_drop(attn) | |
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, -1, self.dim)) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads, | |
mixer='Global', | |
local_mixer=[7, 11], | |
HW=None, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer='nn.LayerNorm', | |
epsilon=1e-6, | |
prenorm=True): | |
super().__init__() | |
if isinstance(norm_layer, str): | |
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon) | |
else: | |
self.norm1 = norm_layer(dim) | |
if mixer == 'Global' or mixer == 'Local': | |
self.mixer = Attention( | |
dim, | |
num_heads=num_heads, | |
mixer=mixer, | |
HW=HW, | |
local_k=local_mixer, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop) | |
elif mixer == 'Conv': | |
self.mixer = ConvMixer( | |
dim, num_heads=num_heads, HW=HW, local_k=local_mixer) | |
else: | |
raise TypeError("The mixer must be one of [Global, Local, Conv]") | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() | |
if isinstance(norm_layer, str): | |
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon) | |
else: | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp_ratio = mlp_ratio | |
self.mlp = Mlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
self.prenorm = prenorm | |
def forward(self, x): | |
if self.prenorm: | |
x = self.norm1(x + self.drop_path(self.mixer(x))) | |
x = self.norm2(x + self.drop_path(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.mixer(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Layer): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, | |
img_size=[32, 100], | |
in_channels=3, | |
embed_dim=768, | |
sub_num=2, | |
patch_size=[4, 4], | |
mode='pope'): | |
super().__init__() | |
num_patches = (img_size[1] // (2 ** sub_num)) * \ | |
(img_size[0] // (2 ** sub_num)) | |
self.img_size = img_size | |
self.num_patches = num_patches | |
self.embed_dim = embed_dim | |
self.norm = None | |
if mode == 'pope': | |
if sub_num == 2: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=None), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=None)) | |
if sub_num == 3: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=None), | |
ConvBNLayer( | |
in_channels=embed_dim // 4, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=None), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=None)) | |
elif mode == 'linear': | |
self.proj = nn.Conv2D( | |
1, embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.num_patches = img_size[0] // patch_size[0] * img_size[ | |
1] // patch_size[1] | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose((0, 2, 1)) | |
return x | |
class SubSample(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
types='Pool', | |
stride=[2, 1], | |
sub_norm='nn.LayerNorm', | |
act=None): | |
super().__init__() | |
self.types = types | |
if types == 'Pool': | |
self.avgpool = nn.AvgPool2D( | |
kernel_size=[3, 5], stride=stride, padding=[1, 2]) | |
self.maxpool = nn.MaxPool2D( | |
kernel_size=[3, 5], stride=stride, padding=[1, 2]) | |
self.proj = nn.Linear(in_channels, out_channels) | |
else: | |
self.conv = nn.Conv2D( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
weight_attr=ParamAttr(initializer=KaimingNormal())) | |
self.norm = eval(sub_norm)(out_channels) | |
if act is not None: | |
self.act = act() | |
else: | |
self.act = None | |
def forward(self, x): | |
if self.types == 'Pool': | |
x1 = self.avgpool(x) | |
x2 = self.maxpool(x) | |
x = (x1 + x2) * 0.5 | |
out = self.proj(x.flatten(2).transpose((0, 2, 1))) | |
else: | |
x = self.conv(x) | |
out = x.flatten(2).transpose((0, 2, 1)) | |
out = self.norm(out) | |
if self.act is not None: | |
out = self.act(out) | |
return out | |
class SVTRNet(nn.Layer): | |
def __init__( | |
self, | |
img_size=[32, 100], | |
in_channels=3, | |
embed_dim=[64, 128, 256], | |
depth=[3, 6, 3], | |
num_heads=[2, 4, 8], | |
mixer=['Local'] * 6 + ['Global'] * | |
6, # Local atten, Global atten, Conv | |
local_mixer=[[7, 11], [7, 11], [7, 11]], | |
patch_merging='Conv', # Conv, Pool, None | |
mlp_ratio=4, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
last_drop=0.1, | |
attn_drop_rate=0., | |
drop_path_rate=0.1, | |
norm_layer='nn.LayerNorm', | |
sub_norm='nn.LayerNorm', | |
epsilon=1e-6, | |
out_channels=192, | |
out_char_num=25, | |
block_unit='Block', | |
act='nn.GELU', | |
last_stage=True, | |
sub_num=2, | |
prenorm=True, | |
use_lenhead=False, | |
**kwargs): | |
super().__init__() | |
self.img_size = img_size | |
self.embed_dim = embed_dim | |
self.out_channels = out_channels | |
self.prenorm = prenorm | |
patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
in_channels=in_channels, | |
embed_dim=embed_dim[0], | |
sub_num=sub_num) | |
num_patches = self.patch_embed.num_patches | |
self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)] | |
self.pos_embed = self.create_parameter( | |
shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_) | |
self.add_parameter("pos_embed", self.pos_embed) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
Block_unit = eval(block_unit) | |
dpr = np.linspace(0, drop_path_rate, sum(depth)) | |
self.blocks1 = nn.LayerList([ | |
Block_unit( | |
dim=embed_dim[0], | |
num_heads=num_heads[0], | |
mixer=mixer[0:depth[0]][i], | |
HW=self.HW, | |
local_mixer=local_mixer[0], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[0:depth[0]][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm) for i in range(depth[0]) | |
]) | |
if patch_merging is not None: | |
self.sub_sample1 = SubSample( | |
embed_dim[0], | |
embed_dim[1], | |
sub_norm=sub_norm, | |
stride=[2, 1], | |
types=patch_merging) | |
HW = [self.HW[0] // 2, self.HW[1]] | |
else: | |
HW = self.HW | |
self.patch_merging = patch_merging | |
self.blocks2 = nn.LayerList([ | |
Block_unit( | |
dim=embed_dim[1], | |
num_heads=num_heads[1], | |
mixer=mixer[depth[0]:depth[0] + depth[1]][i], | |
HW=HW, | |
local_mixer=local_mixer[1], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0]:depth[0] + depth[1]][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm) for i in range(depth[1]) | |
]) | |
if patch_merging is not None: | |
self.sub_sample2 = SubSample( | |
embed_dim[1], | |
embed_dim[2], | |
sub_norm=sub_norm, | |
stride=[2, 1], | |
types=patch_merging) | |
HW = [self.HW[0] // 4, self.HW[1]] | |
else: | |
HW = self.HW | |
self.blocks3 = nn.LayerList([ | |
Block_unit( | |
dim=embed_dim[2], | |
num_heads=num_heads[2], | |
mixer=mixer[depth[0] + depth[1]:][i], | |
HW=HW, | |
local_mixer=local_mixer[2], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0] + depth[1]:][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm) for i in range(depth[2]) | |
]) | |
self.last_stage = last_stage | |
if last_stage: | |
self.avg_pool = nn.AdaptiveAvgPool2D([1, out_char_num]) | |
self.last_conv = nn.Conv2D( | |
in_channels=embed_dim[2], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias_attr=False) | |
self.hardswish = nn.Hardswish() | |
self.dropout = nn.Dropout(p=last_drop, mode="downscale_in_infer") | |
if not prenorm: | |
self.norm = eval(norm_layer)(embed_dim[-1], epsilon=epsilon) | |
self.use_lenhead = use_lenhead | |
if use_lenhead: | |
self.len_conv = nn.Linear(embed_dim[2], self.out_channels) | |
self.hardswish_len = nn.Hardswish() | |
self.dropout_len = nn.Dropout( | |
p=last_drop, mode="downscale_in_infer") | |
trunc_normal_(self.pos_embed) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks1: | |
x = blk(x) | |
if self.patch_merging is not None: | |
x = self.sub_sample1( | |
x.transpose([0, 2, 1]).reshape( | |
[0, self.embed_dim[0], self.HW[0], self.HW[1]])) | |
for blk in self.blocks2: | |
x = blk(x) | |
if self.patch_merging is not None: | |
x = self.sub_sample2( | |
x.transpose([0, 2, 1]).reshape( | |
[0, self.embed_dim[1], self.HW[0] // 2, self.HW[1]])) | |
for blk in self.blocks3: | |
x = blk(x) | |
if not self.prenorm: | |
x = self.norm(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
if self.use_lenhead: | |
len_x = self.len_conv(x.mean(1)) | |
len_x = self.dropout_len(self.hardswish_len(len_x)) | |
if self.last_stage: | |
if self.patch_merging is not None: | |
h = self.HW[0] // 4 | |
else: | |
h = self.HW[0] | |
x = self.avg_pool( | |
x.transpose([0, 2, 1]).reshape( | |
[0, self.embed_dim[2], h, self.HW[1]])) | |
x = self.last_conv(x) | |
x = self.hardswish(x) | |
x = self.dropout(x) | |
if self.use_lenhead: | |
return x, len_x | |
return x | |