Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from paddle import nn | |
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction | |
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification | |
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction | |
from paddlenlp.transformers import AutoModel | |
__all__ = ["LayoutXLMForSer", "LayoutLMForSer"] | |
pretrained_model_dict = { | |
LayoutXLMModel: { | |
"base": "layoutxlm-base-uncased", | |
"vi": "vi-layoutxlm-base-uncased", | |
}, | |
LayoutLMModel: { | |
"base": "layoutlm-base-uncased", | |
}, | |
LayoutLMv2Model: { | |
"base": "layoutlmv2-base-uncased", | |
"vi": "vi-layoutlmv2-base-uncased", | |
}, | |
} | |
class NLPBaseModel(nn.Layer): | |
def __init__(self, | |
base_model_class, | |
model_class, | |
mode="base", | |
type="ser", | |
pretrained=True, | |
checkpoints=None, | |
**kwargs): | |
super(NLPBaseModel, self).__init__() | |
if checkpoints is not None: # load the trained model | |
self.model = model_class.from_pretrained(checkpoints) | |
else: # load the pretrained-model | |
pretrained_model_name = pretrained_model_dict[base_model_class][ | |
mode] | |
if pretrained is True: | |
base_model = base_model_class.from_pretrained( | |
pretrained_model_name) | |
else: | |
base_model = base_model_class.from_pretrained(pretrained) | |
if type == "ser": | |
self.model = model_class( | |
base_model, num_classes=kwargs["num_classes"], dropout=None) | |
else: | |
self.model = model_class(base_model, dropout=None) | |
self.out_channels = 1 | |
self.use_visual_backbone = True | |
class LayoutLMForSer(NLPBaseModel): | |
def __init__(self, | |
num_classes, | |
pretrained=True, | |
checkpoints=None, | |
mode="base", | |
**kwargs): | |
super(LayoutLMForSer, self).__init__( | |
LayoutLMModel, | |
LayoutLMForTokenClassification, | |
mode, | |
"ser", | |
pretrained, | |
checkpoints, | |
num_classes=num_classes, ) | |
self.use_visual_backbone = False | |
def forward(self, x): | |
x = self.model( | |
input_ids=x[0], | |
bbox=x[1], | |
attention_mask=x[2], | |
token_type_ids=x[3], | |
position_ids=None, | |
output_hidden_states=False) | |
return x | |
class LayoutLMv2ForSer(NLPBaseModel): | |
def __init__(self, | |
num_classes, | |
pretrained=True, | |
checkpoints=None, | |
mode="base", | |
**kwargs): | |
super(LayoutLMv2ForSer, self).__init__( | |
LayoutLMv2Model, | |
LayoutLMv2ForTokenClassification, | |
mode, | |
"ser", | |
pretrained, | |
checkpoints, | |
num_classes=num_classes) | |
if hasattr(self.model.layoutlmv2, "use_visual_backbone" | |
) and self.model.layoutlmv2.use_visual_backbone is False: | |
self.use_visual_backbone = False | |
def forward(self, x): | |
if self.use_visual_backbone is True: | |
image = x[4] | |
else: | |
image = None | |
x = self.model( | |
input_ids=x[0], | |
bbox=x[1], | |
attention_mask=x[2], | |
token_type_ids=x[3], | |
image=image, | |
position_ids=None, | |
head_mask=None, | |
labels=None) | |
if self.training: | |
res = {"backbone_out": x[0]} | |
res.update(x[1]) | |
return res | |
else: | |
return x | |
class LayoutXLMForSer(NLPBaseModel): | |
def __init__(self, | |
num_classes, | |
pretrained=True, | |
checkpoints=None, | |
mode="base", | |
**kwargs): | |
super(LayoutXLMForSer, self).__init__( | |
LayoutXLMModel, | |
LayoutXLMForTokenClassification, | |
mode, | |
"ser", | |
pretrained, | |
checkpoints, | |
num_classes=num_classes) | |
if hasattr(self.model.layoutxlm, "use_visual_backbone" | |
) and self.model.layoutxlm.use_visual_backbone is False: | |
self.use_visual_backbone = False | |
def forward(self, x): | |
if self.use_visual_backbone is True: | |
image = x[4] | |
else: | |
image = None | |
x = self.model( | |
input_ids=x[0], | |
bbox=x[1], | |
attention_mask=x[2], | |
token_type_ids=x[3], | |
image=image, | |
position_ids=None, | |
head_mask=None, | |
labels=None) | |
if self.training: | |
res = {"backbone_out": x[0]} | |
res.update(x[1]) | |
return res | |
else: | |
return x | |
class LayoutLMv2ForRe(NLPBaseModel): | |
def __init__(self, pretrained=True, checkpoints=None, mode="base", | |
**kwargs): | |
super(LayoutLMv2ForRe, self).__init__( | |
LayoutLMv2Model, LayoutLMv2ForRelationExtraction, mode, "re", | |
pretrained, checkpoints) | |
if hasattr(self.model.layoutlmv2, "use_visual_backbone" | |
) and self.model.layoutlmv2.use_visual_backbone is False: | |
self.use_visual_backbone = False | |
def forward(self, x): | |
x = self.model( | |
input_ids=x[0], | |
bbox=x[1], | |
attention_mask=x[2], | |
token_type_ids=x[3], | |
image=x[4], | |
position_ids=None, | |
head_mask=None, | |
labels=None, | |
entities=x[5], | |
relations=x[6]) | |
return x | |
class LayoutXLMForRe(NLPBaseModel): | |
def __init__(self, pretrained=True, checkpoints=None, mode="base", | |
**kwargs): | |
super(LayoutXLMForRe, self).__init__( | |
LayoutXLMModel, LayoutXLMForRelationExtraction, mode, "re", | |
pretrained, checkpoints) | |
if hasattr(self.model.layoutxlm, "use_visual_backbone" | |
) and self.model.layoutxlm.use_visual_backbone is False: | |
self.use_visual_backbone = False | |
def forward(self, x): | |
if self.use_visual_backbone is True: | |
image = x[4] | |
entities = x[5] | |
relations = x[6] | |
else: | |
image = None | |
entities = x[4] | |
relations = x[5] | |
x = self.model( | |
input_ids=x[0], | |
bbox=x[1], | |
attention_mask=x[2], | |
token_type_ids=x[3], | |
image=image, | |
position_ids=None, | |
head_mask=None, | |
labels=None, | |
entities=entities, | |
relations=relations) | |
return x | |