Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
import math | |
from paddle.nn.initializer import TruncatedNormal, Constant, Normal | |
ones_ = Constant(value=1.) | |
zeros_ = Constant(value=0.) | |
class CT_Head(nn.Layer): | |
def __init__(self, | |
in_channels, | |
hidden_dim, | |
num_classes, | |
loss_kernel=None, | |
loss_loc=None): | |
super(CT_Head, self).__init__() | |
self.conv1 = nn.Conv2D( | |
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1) | |
self.bn1 = nn.BatchNorm2D(hidden_dim) | |
self.relu1 = nn.ReLU() | |
self.conv2 = nn.Conv2D( | |
hidden_dim, num_classes, kernel_size=1, stride=1, padding=0) | |
for m in self.sublayers(): | |
if isinstance(m, nn.Conv2D): | |
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
normal_ = Normal(mean=0.0, std=math.sqrt(2. / n)) | |
normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2D): | |
zeros_(m.bias) | |
ones_(m.weight) | |
def _upsample(self, x, scale=1): | |
return F.upsample(x, scale_factor=scale, mode='bilinear') | |
def forward(self, f, targets=None): | |
out = self.conv1(f) | |
out = self.relu1(self.bn1(out)) | |
out = self.conv2(out) | |
if self.training: | |
out = self._upsample(out, scale=4) | |
return {'maps': out} | |
else: | |
score = F.sigmoid(out[:, 0, :, :]) | |
return {'maps': out, 'score': score} | |