Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
from ppocr.modeling.backbones.det_mobilenet_v3 import ConvBNLayer | |
def get_bias_attr(k): | |
stdv = 1.0 / math.sqrt(k * 1.0) | |
initializer = paddle.nn.initializer.Uniform(-stdv, stdv) | |
bias_attr = ParamAttr(initializer=initializer) | |
return bias_attr | |
class Head(nn.Layer): | |
def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs): | |
super(Head, self).__init__() | |
self.conv1 = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=in_channels // 4, | |
kernel_size=kernel_list[0], | |
padding=int(kernel_list[0] // 2), | |
weight_attr=ParamAttr(), | |
bias_attr=False) | |
self.conv_bn1 = nn.BatchNorm( | |
num_channels=in_channels // 4, | |
param_attr=ParamAttr( | |
initializer=paddle.nn.initializer.Constant(value=1.0)), | |
bias_attr=ParamAttr( | |
initializer=paddle.nn.initializer.Constant(value=1e-4)), | |
act='relu') | |
self.conv2 = nn.Conv2DTranspose( | |
in_channels=in_channels // 4, | |
out_channels=in_channels // 4, | |
kernel_size=kernel_list[1], | |
stride=2, | |
weight_attr=ParamAttr( | |
initializer=paddle.nn.initializer.KaimingUniform()), | |
bias_attr=get_bias_attr(in_channels // 4)) | |
self.conv_bn2 = nn.BatchNorm( | |
num_channels=in_channels // 4, | |
param_attr=ParamAttr( | |
initializer=paddle.nn.initializer.Constant(value=1.0)), | |
bias_attr=ParamAttr( | |
initializer=paddle.nn.initializer.Constant(value=1e-4)), | |
act="relu") | |
self.conv3 = nn.Conv2DTranspose( | |
in_channels=in_channels // 4, | |
out_channels=1, | |
kernel_size=kernel_list[2], | |
stride=2, | |
weight_attr=ParamAttr( | |
initializer=paddle.nn.initializer.KaimingUniform()), | |
bias_attr=get_bias_attr(in_channels // 4), ) | |
def forward(self, x, return_f=False): | |
x = self.conv1(x) | |
x = self.conv_bn1(x) | |
x = self.conv2(x) | |
x = self.conv_bn2(x) | |
if return_f is True: | |
f = x | |
x = self.conv3(x) | |
x = F.sigmoid(x) | |
if return_f is True: | |
return x, f | |
return x | |
class DBHead(nn.Layer): | |
""" | |
Differentiable Binarization (DB) for text detection: | |
see https://arxiv.org/abs/1911.08947 | |
args: | |
params(dict): super parameters for build DB network | |
""" | |
def __init__(self, in_channels, k=50, **kwargs): | |
super(DBHead, self).__init__() | |
self.k = k | |
self.binarize = Head(in_channels, **kwargs) | |
self.thresh = Head(in_channels, **kwargs) | |
def step_function(self, x, y): | |
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y))) | |
def forward(self, x, targets=None): | |
shrink_maps = self.binarize(x) | |
if not self.training: | |
return {'maps': shrink_maps} | |
threshold_maps = self.thresh(x) | |
binary_maps = self.step_function(shrink_maps, threshold_maps) | |
y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1) | |
return {'maps': y} | |
class LocalModule(nn.Layer): | |
def __init__(self, in_c, mid_c, use_distance=True): | |
super(self.__class__, self).__init__() | |
self.last_3 = ConvBNLayer(in_c + 1, mid_c, 3, 1, 1, act='relu') | |
self.last_1 = nn.Conv2D(mid_c, 1, 1, 1, 0) | |
def forward(self, x, init_map, distance_map): | |
outf = paddle.concat([init_map, x], axis=1) | |
# last Conv | |
out = self.last_1(self.last_3(outf)) | |
return out | |
class PFHeadLocal(DBHead): | |
def __init__(self, in_channels, k=50, mode='small', **kwargs): | |
super(PFHeadLocal, self).__init__(in_channels, k, **kwargs) | |
self.mode = mode | |
self.up_conv = nn.Upsample(scale_factor=2, mode="nearest", align_mode=1) | |
if self.mode == 'large': | |
self.cbn_layer = LocalModule(in_channels // 4, in_channels // 4) | |
elif self.mode == 'small': | |
self.cbn_layer = LocalModule(in_channels // 4, in_channels // 8) | |
def forward(self, x, targets=None): | |
shrink_maps, f = self.binarize(x, return_f=True) | |
base_maps = shrink_maps | |
cbn_maps = self.cbn_layer(self.up_conv(f), shrink_maps, None) | |
cbn_maps = F.sigmoid(cbn_maps) | |
if not self.training: | |
return {'maps': 0.5 * (base_maps + cbn_maps), 'cbn_maps': cbn_maps} | |
threshold_maps = self.thresh(x) | |
binary_maps = self.step_function(shrink_maps, threshold_maps) | |
y = paddle.concat([cbn_maps, threshold_maps, binary_maps], axis=1) | |
return {'maps': y, 'distance_maps': cbn_maps, 'cbn_maps': binary_maps} | |