Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class EASTHead(nn.Layer): | |
""" | |
""" | |
def __init__(self, in_channels, model_name, **kwargs): | |
super(EASTHead, self).__init__() | |
self.model_name = model_name | |
if self.model_name == "large": | |
num_outputs = [128, 64, 1, 8] | |
else: | |
num_outputs = [64, 32, 1, 8] | |
self.det_conv1 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=num_outputs[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="det_head1") | |
self.det_conv2 = ConvBNLayer( | |
in_channels=num_outputs[0], | |
out_channels=num_outputs[1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="det_head2") | |
self.score_conv = ConvBNLayer( | |
in_channels=num_outputs[1], | |
out_channels=num_outputs[2], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
if_act=False, | |
act=None, | |
name="f_score") | |
self.geo_conv = ConvBNLayer( | |
in_channels=num_outputs[1], | |
out_channels=num_outputs[3], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
if_act=False, | |
act=None, | |
name="f_geo") | |
def forward(self, x, targets=None): | |
f_det = self.det_conv1(x) | |
f_det = self.det_conv2(f_det) | |
f_score = self.score_conv(f_det) | |
f_score = F.sigmoid(f_score) | |
f_geo = self.geo_conv(f_det) | |
f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800 | |
pred = {'f_score': f_score, 'f_geo': f_geo} | |
return pred | |