Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class SAST_Header1(nn.Layer): | |
def __init__(self, in_channels, **kwargs): | |
super(SAST_Header1, self).__init__() | |
out_channels = [64, 64, 128] | |
self.score_conv = nn.Sequential( | |
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_score1'), | |
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_score2'), | |
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_score3'), | |
ConvBNLayer(out_channels[2], 1, 3, 1, act=None, name='f_score4') | |
) | |
self.border_conv = nn.Sequential( | |
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_border1'), | |
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_border2'), | |
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_border3'), | |
ConvBNLayer(out_channels[2], 4, 3, 1, act=None, name='f_border4') | |
) | |
def forward(self, x): | |
f_score = self.score_conv(x) | |
f_score = F.sigmoid(f_score) | |
f_border = self.border_conv(x) | |
return f_score, f_border | |
class SAST_Header2(nn.Layer): | |
def __init__(self, in_channels, **kwargs): | |
super(SAST_Header2, self).__init__() | |
out_channels = [64, 64, 128] | |
self.tvo_conv = nn.Sequential( | |
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tvo1'), | |
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tvo2'), | |
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tvo3'), | |
ConvBNLayer(out_channels[2], 8, 3, 1, act=None, name='f_tvo4') | |
) | |
self.tco_conv = nn.Sequential( | |
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tco1'), | |
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tco2'), | |
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tco3'), | |
ConvBNLayer(out_channels[2], 2, 3, 1, act=None, name='f_tco4') | |
) | |
def forward(self, x): | |
f_tvo = self.tvo_conv(x) | |
f_tco = self.tco_conv(x) | |
return f_tvo, f_tco | |
class SASTHead(nn.Layer): | |
""" | |
""" | |
def __init__(self, in_channels, **kwargs): | |
super(SASTHead, self).__init__() | |
self.head1 = SAST_Header1(in_channels) | |
self.head2 = SAST_Header2(in_channels) | |
def forward(self, x, targets=None): | |
f_score, f_border = self.head1(x) | |
f_tvo, f_tco = self.head2(x) | |
predicts = {} | |
predicts['f_score'] = f_score | |
predicts['f_border'] = f_border | |
predicts['f_tvo'] = f_tvo | |
predicts['f_tco'] = f_tco | |
return predicts |