Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/FangShancheng/ABINet/tree/main/modules | |
""" | |
import math | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle.nn import LayerList | |
from ppocr.modeling.heads.rec_nrtr_head import TransformerBlock, PositionalEncoding | |
class BCNLanguage(nn.Layer): | |
def __init__(self, | |
d_model=512, | |
nhead=8, | |
num_layers=4, | |
dim_feedforward=2048, | |
dropout=0., | |
max_length=25, | |
detach=True, | |
num_classes=37): | |
super().__init__() | |
self.d_model = d_model | |
self.detach = detach | |
self.max_length = max_length + 1 # additional stop token | |
self.proj = nn.Linear(num_classes, d_model, bias_attr=False) | |
self.token_encoder = PositionalEncoding( | |
dropout=0.1, dim=d_model, max_len=self.max_length) | |
self.pos_encoder = PositionalEncoding( | |
dropout=0, dim=d_model, max_len=self.max_length) | |
self.decoder = nn.LayerList([ | |
TransformerBlock( | |
d_model=d_model, | |
nhead=nhead, | |
dim_feedforward=dim_feedforward, | |
attention_dropout_rate=dropout, | |
residual_dropout_rate=dropout, | |
with_self_attn=False, | |
with_cross_attn=True) for i in range(num_layers) | |
]) | |
self.cls = nn.Linear(d_model, num_classes) | |
def forward(self, tokens, lengths): | |
""" | |
Args: | |
tokens: (B, N, C) where N is length, B is batch size and C is classes number | |
lengths: (B,) | |
""" | |
if self.detach: tokens = tokens.detach() | |
embed = self.proj(tokens) # (B, N, C) | |
embed = self.token_encoder(embed) # (B, N, C) | |
padding_mask = _get_mask(lengths, self.max_length) | |
zeros = paddle.zeros_like(embed) # (B, N, C) | |
qeury = self.pos_encoder(zeros) | |
for decoder_layer in self.decoder: | |
qeury = decoder_layer(qeury, embed, cross_mask=padding_mask) | |
output = qeury # (B, N, C) | |
logits = self.cls(output) # (B, N, C) | |
return output, logits | |
def encoder_layer(in_c, out_c, k=3, s=2, p=1): | |
return nn.Sequential( | |
nn.Conv2D(in_c, out_c, k, s, p), nn.BatchNorm2D(out_c), nn.ReLU()) | |
def decoder_layer(in_c, | |
out_c, | |
k=3, | |
s=1, | |
p=1, | |
mode='nearest', | |
scale_factor=None, | |
size=None): | |
align_corners = False if mode == 'nearest' else True | |
return nn.Sequential( | |
nn.Upsample( | |
size=size, | |
scale_factor=scale_factor, | |
mode=mode, | |
align_corners=align_corners), | |
nn.Conv2D(in_c, out_c, k, s, p), | |
nn.BatchNorm2D(out_c), | |
nn.ReLU()) | |
class PositionAttention(nn.Layer): | |
def __init__(self, | |
max_length, | |
in_channels=512, | |
num_channels=64, | |
h=8, | |
w=32, | |
mode='nearest', | |
**kwargs): | |
super().__init__() | |
self.max_length = max_length | |
self.k_encoder = nn.Sequential( | |
encoder_layer( | |
in_channels, num_channels, s=(1, 2)), | |
encoder_layer( | |
num_channels, num_channels, s=(2, 2)), | |
encoder_layer( | |
num_channels, num_channels, s=(2, 2)), | |
encoder_layer( | |
num_channels, num_channels, s=(2, 2))) | |
self.k_decoder = nn.Sequential( | |
decoder_layer( | |
num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer( | |
num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer( | |
num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer( | |
num_channels, in_channels, size=(h, w), mode=mode)) | |
self.pos_encoder = PositionalEncoding( | |
dropout=0, dim=in_channels, max_len=max_length) | |
self.project = nn.Linear(in_channels, in_channels) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
k, v = x, x | |
# calculate key vector | |
features = [] | |
for i in range(0, len(self.k_encoder)): | |
k = self.k_encoder[i](k) | |
features.append(k) | |
for i in range(0, len(self.k_decoder) - 1): | |
k = self.k_decoder[i](k) | |
# print(k.shape, features[len(self.k_decoder) - 2 - i].shape) | |
k = k + features[len(self.k_decoder) - 2 - i] | |
k = self.k_decoder[-1](k) | |
# calculate query vector | |
# TODO q=f(q,k) | |
zeros = paddle.zeros( | |
(B, self.max_length, C), dtype=x.dtype) # (T, N, C) | |
q = self.pos_encoder(zeros) # (B, N, C) | |
q = self.project(q) # (B, N, C) | |
# calculate attention | |
attn_scores = q @k.flatten(2) # (B, N, (H*W)) | |
attn_scores = attn_scores / (C**0.5) | |
attn_scores = F.softmax(attn_scores, axis=-1) | |
v = v.flatten(2).transpose([0, 2, 1]) # (B, (H*W), C) | |
attn_vecs = attn_scores @v # (B, N, C) | |
return attn_vecs, attn_scores.reshape([0, self.max_length, H, W]) | |
class ABINetHead(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
d_model=512, | |
nhead=8, | |
num_layers=3, | |
dim_feedforward=2048, | |
dropout=0.1, | |
max_length=25, | |
use_lang=False, | |
iter_size=1): | |
super().__init__() | |
self.max_length = max_length + 1 | |
self.pos_encoder = PositionalEncoding( | |
dropout=0.1, dim=d_model, max_len=8 * 32) | |
self.encoder = nn.LayerList([ | |
TransformerBlock( | |
d_model=d_model, | |
nhead=nhead, | |
dim_feedforward=dim_feedforward, | |
attention_dropout_rate=dropout, | |
residual_dropout_rate=dropout, | |
with_self_attn=True, | |
with_cross_attn=False) for i in range(num_layers) | |
]) | |
self.decoder = PositionAttention( | |
max_length=max_length + 1, # additional stop token | |
mode='nearest', ) | |
self.out_channels = out_channels | |
self.cls = nn.Linear(d_model, self.out_channels) | |
self.use_lang = use_lang | |
if use_lang: | |
self.iter_size = iter_size | |
self.language = BCNLanguage( | |
d_model=d_model, | |
nhead=nhead, | |
num_layers=4, | |
dim_feedforward=dim_feedforward, | |
dropout=dropout, | |
max_length=max_length, | |
num_classes=self.out_channels) | |
# alignment | |
self.w_att_align = nn.Linear(2 * d_model, d_model) | |
self.cls_align = nn.Linear(d_model, self.out_channels) | |
def forward(self, x, targets=None): | |
x = x.transpose([0, 2, 3, 1]) | |
_, H, W, C = x.shape | |
feature = x.flatten(1, 2) | |
feature = self.pos_encoder(feature) | |
for encoder_layer in self.encoder: | |
feature = encoder_layer(feature) | |
feature = feature.reshape([0, H, W, C]).transpose([0, 3, 1, 2]) | |
v_feature, attn_scores = self.decoder( | |
feature) # (B, N, C), (B, C, H, W) | |
vis_logits = self.cls(v_feature) # (B, N, C) | |
logits = vis_logits | |
vis_lengths = _get_length(vis_logits) | |
if self.use_lang: | |
align_logits = vis_logits | |
align_lengths = vis_lengths | |
all_l_res, all_a_res = [], [] | |
for i in range(self.iter_size): | |
tokens = F.softmax(align_logits, axis=-1) | |
lengths = align_lengths | |
lengths = paddle.clip( | |
lengths, 2, self.max_length) # TODO:move to langauge model | |
l_feature, l_logits = self.language(tokens, lengths) | |
# alignment | |
all_l_res.append(l_logits) | |
fuse = paddle.concat((l_feature, v_feature), -1) | |
f_att = F.sigmoid(self.w_att_align(fuse)) | |
output = f_att * v_feature + (1 - f_att) * l_feature | |
align_logits = self.cls_align(output) # (B, N, C) | |
align_lengths = _get_length(align_logits) | |
all_a_res.append(align_logits) | |
if self.training: | |
return { | |
'align': all_a_res, | |
'lang': all_l_res, | |
'vision': vis_logits | |
} | |
else: | |
logits = align_logits | |
if self.training: | |
return logits | |
else: | |
return F.softmax(logits, -1) | |
def _get_length(logit): | |
""" Greed decoder to obtain length from logit""" | |
out = (logit.argmax(-1) == 0) | |
abn = out.any(-1) | |
out_int = out.cast('int32') | |
out = (out_int.cumsum(-1) == 1) & out | |
out = out.cast('int32') | |
out = out.argmax(-1) | |
out = out + 1 | |
len_seq = paddle.zeros_like(out) + logit.shape[1] | |
out = paddle.where(abn, out, len_seq) | |
return out | |
def _get_mask(length, max_length): | |
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). | |
Unmasked positions are filled with float(0.0). | |
""" | |
length = length.unsqueeze(-1) | |
B = paddle.shape(length)[0] | |
grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1]) | |
zero_mask = paddle.zeros([B, max_length], dtype='float32') | |
inf_mask = paddle.full([B, max_length], '-inf', dtype='float32') | |
diag_mask = paddle.diag( | |
paddle.full( | |
[max_length], '-inf', dtype=paddle.float32), | |
offset=0, | |
name=None) | |
mask = paddle.where(grid >= length, inf_mask, zero_mask) | |
mask = mask.unsqueeze(1) + diag_mask | |
return mask.unsqueeze(1) | |