Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py | |
""" | |
import copy | |
import math | |
import paddle | |
from paddle import nn | |
from paddle.nn import functional as F | |
class TableMasterHead(nn.Layer): | |
""" | |
Split to two transformer header at the last layer. | |
Cls_layer is used to structure token classification. | |
Bbox_layer is used to regress bbox coord. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels=30, | |
headers=8, | |
d_ff=2048, | |
dropout=0, | |
max_text_length=500, | |
loc_reg_num=4, | |
**kwargs): | |
super(TableMasterHead, self).__init__() | |
hidden_size = in_channels[-1] | |
self.layers = clones( | |
DecoderLayer(headers, hidden_size, dropout, d_ff), 2) | |
self.cls_layer = clones( | |
DecoderLayer(headers, hidden_size, dropout, d_ff), 1) | |
self.bbox_layer = clones( | |
DecoderLayer(headers, hidden_size, dropout, d_ff), 1) | |
self.cls_fc = nn.Linear(hidden_size, out_channels) | |
self.bbox_fc = nn.Sequential( | |
# nn.Linear(hidden_size, hidden_size), | |
nn.Linear(hidden_size, loc_reg_num), | |
nn.Sigmoid()) | |
self.norm = nn.LayerNorm(hidden_size) | |
self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels) | |
self.positional_encoding = PositionalEncoding(d_model=hidden_size) | |
self.SOS = out_channels - 3 | |
self.PAD = out_channels - 1 | |
self.out_channels = out_channels | |
self.loc_reg_num = loc_reg_num | |
self.max_text_length = max_text_length | |
def make_mask(self, tgt): | |
""" | |
Make mask for self attention. | |
:param src: [b, c, h, l_src] | |
:param tgt: [b, l_tgt] | |
:return: | |
""" | |
trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3) | |
tgt_len = paddle.shape(tgt)[1] | |
trg_sub_mask = paddle.tril( | |
paddle.ones( | |
([tgt_len, tgt_len]), dtype=paddle.float32)) | |
tgt_mask = paddle.logical_and( | |
trg_pad_mask.astype(paddle.float32), trg_sub_mask) | |
return tgt_mask.astype(paddle.float32) | |
def decode(self, input, feature, src_mask, tgt_mask): | |
# main process of transformer decoder. | |
x = self.embedding(input) # x: 1*x*512, feature: 1*3600,512 | |
x = self.positional_encoding(x) | |
# origin transformer layers | |
for i, layer in enumerate(self.layers): | |
x = layer(x, feature, src_mask, tgt_mask) | |
# cls head | |
for layer in self.cls_layer: | |
cls_x = layer(x, feature, src_mask, tgt_mask) | |
cls_x = self.norm(cls_x) | |
# bbox head | |
for layer in self.bbox_layer: | |
bbox_x = layer(x, feature, src_mask, tgt_mask) | |
bbox_x = self.norm(bbox_x) | |
return self.cls_fc(cls_x), self.bbox_fc(bbox_x) | |
def greedy_forward(self, SOS, feature): | |
input = SOS | |
output = paddle.zeros( | |
[input.shape[0], self.max_text_length + 1, self.out_channels]) | |
bbox_output = paddle.zeros( | |
[input.shape[0], self.max_text_length + 1, self.loc_reg_num]) | |
max_text_length = paddle.to_tensor(self.max_text_length) | |
for i in range(max_text_length + 1): | |
target_mask = self.make_mask(input) | |
out_step, bbox_output_step = self.decode(input, feature, None, | |
target_mask) | |
prob = F.softmax(out_step, axis=-1) | |
next_word = prob.argmax(axis=2, dtype="int64") | |
input = paddle.concat( | |
[input, next_word[:, -1].unsqueeze(-1)], axis=1) | |
if i == self.max_text_length: | |
output = out_step | |
bbox_output = bbox_output_step | |
return output, bbox_output | |
def forward_train(self, out_enc, targets): | |
# x is token of label | |
# feat is feature after backbone before pe. | |
# out_enc is feature after pe. | |
padded_targets = targets[0] | |
src_mask = None | |
tgt_mask = self.make_mask(padded_targets[:, :-1]) | |
output, bbox_output = self.decode(padded_targets[:, :-1], out_enc, | |
src_mask, tgt_mask) | |
return {'structure_probs': output, 'loc_preds': bbox_output} | |
def forward_test(self, out_enc): | |
batch_size = out_enc.shape[0] | |
SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS | |
output, bbox_output = self.greedy_forward(SOS, out_enc) | |
output = F.softmax(output) | |
return {'structure_probs': output, 'loc_preds': bbox_output} | |
def forward(self, feat, targets=None): | |
feat = feat[-1] | |
b, c, h, w = feat.shape | |
feat = feat.reshape([b, c, h * w]) # flatten 2D feature map | |
feat = feat.transpose((0, 2, 1)) | |
out_enc = self.positional_encoding(feat) | |
if self.training: | |
return self.forward_train(out_enc, targets) | |
return self.forward_test(out_enc) | |
class DecoderLayer(nn.Layer): | |
""" | |
Decoder is made of self attention, srouce attention and feed forward. | |
""" | |
def __init__(self, headers, d_model, dropout, d_ff): | |
super(DecoderLayer, self).__init__() | |
self.self_attn = MultiHeadAttention(headers, d_model, dropout) | |
self.src_attn = MultiHeadAttention(headers, d_model, dropout) | |
self.feed_forward = FeedForward(d_model, d_ff, dropout) | |
self.sublayer = clones(SubLayerConnection(d_model, dropout), 3) | |
def forward(self, x, feature, src_mask, tgt_mask): | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) | |
x = self.sublayer[1]( | |
x, lambda x: self.src_attn(x, feature, feature, src_mask)) | |
return self.sublayer[2](x, self.feed_forward) | |
class MultiHeadAttention(nn.Layer): | |
def __init__(self, headers, d_model, dropout): | |
super(MultiHeadAttention, self).__init__() | |
assert d_model % headers == 0 | |
self.d_k = int(d_model / headers) | |
self.headers = headers | |
self.linears = clones(nn.Linear(d_model, d_model), 4) | |
self.attn = None | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, query, key, value, mask=None): | |
B = query.shape[0] | |
# 1) Do all the linear projections in batch from d_model => h x d_k | |
query, key, value = \ | |
[l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3]) | |
for l, x in zip(self.linears, (query, key, value))] | |
# 2) Apply attention on all the projected vectors in batch | |
x, self.attn = self_attention( | |
query, key, value, mask=mask, dropout=self.dropout) | |
x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k]) | |
return self.linears[-1](x) | |
class FeedForward(nn.Layer): | |
def __init__(self, d_model, d_ff, dropout): | |
super(FeedForward, self).__init__() | |
self.w_1 = nn.Linear(d_model, d_ff) | |
self.w_2 = nn.Linear(d_ff, d_model) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
return self.w_2(self.dropout(F.relu(self.w_1(x)))) | |
class SubLayerConnection(nn.Layer): | |
""" | |
A residual connection followed by a layer norm. | |
Note for code simplicity the norm is first as opposed to last. | |
""" | |
def __init__(self, size, dropout): | |
super(SubLayerConnection, self).__init__() | |
self.norm = nn.LayerNorm(size) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, sublayer): | |
return x + self.dropout(sublayer(self.norm(x))) | |
def masked_fill(x, mask, value): | |
mask = mask.astype(x.dtype) | |
return x * paddle.logical_not(mask).astype(x.dtype) + mask * value | |
def self_attention(query, key, value, mask=None, dropout=None): | |
""" | |
Compute 'Scale Dot Product Attention' | |
""" | |
d_k = value.shape[-1] | |
score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k)) | |
if mask is not None: | |
# score = score.masked_fill(mask == 0, -1e9) # b, h, L, L | |
score = masked_fill(score, mask == 0, -6.55e4) # for fp16 | |
p_attn = F.softmax(score, axis=-1) | |
if dropout is not None: | |
p_attn = dropout(p_attn) | |
return paddle.matmul(p_attn, value), p_attn | |
def clones(module, N): | |
""" Produce N identical layers """ | |
return nn.LayerList([copy.deepcopy(module) for _ in range(N)]) | |
class Embeddings(nn.Layer): | |
def __init__(self, d_model, vocab): | |
super(Embeddings, self).__init__() | |
self.lut = nn.Embedding(vocab, d_model) | |
self.d_model = d_model | |
def forward(self, *input): | |
x = input[0] | |
return self.lut(x) * math.sqrt(self.d_model) | |
class PositionalEncoding(nn.Layer): | |
""" Implement the PE function. """ | |
def __init__(self, d_model, dropout=0., max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# Compute the positional encodings once in log space. | |
pe = paddle.zeros([max_len, d_model]) | |
position = paddle.arange(0, max_len).unsqueeze(1).astype('float32') | |
div_term = paddle.exp( | |
paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model) | |
pe[:, 0::2] = paddle.sin(position * div_term) | |
pe[:, 1::2] = paddle.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, feat, **kwargs): | |
feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512 | |
return self.dropout(feat) | |