Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
import os | |
import sys | |
import math | |
from paddle.nn.initializer import TruncatedNormal, Constant, Normal | |
ones_ = Constant(value=1.) | |
zeros_ = Constant(value=0.) | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..'))) | |
class Conv_BN_ReLU(nn.Layer): | |
def __init__(self, | |
in_planes, | |
out_planes, | |
kernel_size=1, | |
stride=1, | |
padding=0): | |
super(Conv_BN_ReLU, self).__init__() | |
self.conv = nn.Conv2D( | |
in_planes, | |
out_planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias_attr=False) | |
self.bn = nn.BatchNorm2D(out_planes) | |
self.relu = nn.ReLU() | |
for m in self.sublayers(): | |
if isinstance(m, nn.Conv2D): | |
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
normal_ = Normal(mean=0.0, std=math.sqrt(2. / n)) | |
normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2D): | |
zeros_(m.bias) | |
ones_(m.weight) | |
def forward(self, x): | |
return self.relu(self.bn(self.conv(x))) | |
class FPEM(nn.Layer): | |
def __init__(self, in_channels, out_channels): | |
super(FPEM, self).__init__() | |
planes = out_channels | |
self.dwconv3_1 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes) | |
self.dwconv2_1 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes) | |
self.dwconv1_1 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes) | |
self.dwconv2_2 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes) | |
self.dwconv3_2 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes) | |
self.dwconv4_2 = nn.Conv2D( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=planes, | |
bias_attr=False) | |
self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes) | |
def _upsample_add(self, x, y): | |
return F.upsample(x, scale_factor=2, mode='bilinear') + y | |
def forward(self, f1, f2, f3, f4): | |
# up-down | |
f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3))) | |
f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2))) | |
f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1))) | |
# down-up | |
f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1))) | |
f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2))) | |
f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3))) | |
return f1, f2, f3, f4 | |
class CTFPN(nn.Layer): | |
def __init__(self, in_channels, out_channel=128): | |
super(CTFPN, self).__init__() | |
self.out_channels = out_channel * 4 | |
self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128) | |
self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128) | |
self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128) | |
self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128) | |
self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) | |
self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) | |
def _upsample(self, x, scale=1): | |
return F.upsample(x, scale_factor=scale, mode='bilinear') | |
def forward(self, f): | |
# # reduce channel | |
f1 = self.reduce_layer1(f[0]) # N,64,160,160 --> N, 128, 160, 160 | |
f2 = self.reduce_layer2(f[1]) # N, 128, 80, 80 --> N, 128, 80, 80 | |
f3 = self.reduce_layer3(f[2]) # N, 256, 40, 40 --> N, 128, 40, 40 | |
f4 = self.reduce_layer4(f[3]) # N, 512, 20, 20 --> N, 128, 20, 20 | |
# FPEM | |
f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4) | |
f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1) | |
# FFM | |
f1 = f1_1 + f1_2 | |
f2 = f2_1 + f2_2 | |
f3 = f3_1 + f3_2 | |
f4 = f4_1 + f4_2 | |
f2 = self._upsample(f2, scale=2) | |
f3 = self._upsample(f3, scale=4) | |
f4 = self._upsample(f4, scale=8) | |
ff = paddle.concat((f1, f2, f3, f4), 1) # N,512, 160,160 | |
return ff | |