Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
import os | |
import sys | |
from ppocr.modeling.necks.intracl import IntraCLBlock | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..'))) | |
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule | |
class DSConv(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding, | |
stride=1, | |
groups=None, | |
if_act=True, | |
act="relu", | |
**kwargs): | |
super(DSConv, self).__init__() | |
if groups == None: | |
groups = in_channels | |
self.if_act = if_act | |
self.act = act | |
self.conv1 = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
bias_attr=False) | |
self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None) | |
self.conv2 = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=int(in_channels * 4), | |
kernel_size=1, | |
stride=1, | |
bias_attr=False) | |
self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None) | |
self.conv3 = nn.Conv2D( | |
in_channels=int(in_channels * 4), | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
bias_attr=False) | |
self._c = [in_channels, out_channels] | |
if in_channels != out_channels: | |
self.conv_end = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
bias_attr=False) | |
def forward(self, inputs): | |
x = self.conv1(inputs) | |
x = self.bn1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
if self.if_act: | |
if self.act == "relu": | |
x = F.relu(x) | |
elif self.act == "hardswish": | |
x = F.hardswish(x) | |
else: | |
print("The activation function({}) is selected incorrectly.". | |
format(self.act)) | |
exit() | |
x = self.conv3(x) | |
if self._c[0] != self._c[1]: | |
x = x + self.conv_end(inputs) | |
return x | |
class DBFPN(nn.Layer): | |
def __init__(self, in_channels, out_channels, use_asf=False, **kwargs): | |
super(DBFPN, self).__init__() | |
self.out_channels = out_channels | |
self.use_asf = use_asf | |
weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.in2_conv = nn.Conv2D( | |
in_channels=in_channels[0], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.in3_conv = nn.Conv2D( | |
in_channels=in_channels[1], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.in4_conv = nn.Conv2D( | |
in_channels=in_channels[2], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.in5_conv = nn.Conv2D( | |
in_channels=in_channels[3], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.p5_conv = nn.Conv2D( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.p4_conv = nn.Conv2D( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.p3_conv = nn.Conv2D( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.p2_conv = nn.Conv2D( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
if self.use_asf is True: | |
self.asf = ASFBlock(self.out_channels, self.out_channels // 4) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.in5_conv(c5) | |
in4 = self.in4_conv(c4) | |
in3 = self.in3_conv(c3) | |
in2 = self.in2_conv(c2) | |
out4 = in4 + F.upsample( | |
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16 | |
out3 = in3 + F.upsample( | |
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8 | |
out2 = in2 + F.upsample( | |
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4 | |
p5 = self.p5_conv(in5) | |
p4 = self.p4_conv(out4) | |
p3 = self.p3_conv(out3) | |
p2 = self.p2_conv(out2) | |
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) | |
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) | |
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) | |
fuse = paddle.concat([p5, p4, p3, p2], axis=1) | |
if self.use_asf is True: | |
fuse = self.asf(fuse, [p5, p4, p3, p2]) | |
return fuse | |
class RSELayer(nn.Layer): | |
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True): | |
super(RSELayer, self).__init__() | |
weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.out_channels = out_channels | |
self.in_conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
kernel_size=kernel_size, | |
padding=int(kernel_size // 2), | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False) | |
self.se_block = SEModule(self.out_channels) | |
self.shortcut = shortcut | |
def forward(self, ins): | |
x = self.in_conv(ins) | |
if self.shortcut: | |
out = x + self.se_block(x) | |
else: | |
out = self.se_block(x) | |
return out | |
class RSEFPN(nn.Layer): | |
def __init__(self, in_channels, out_channels, shortcut=True, **kwargs): | |
super(RSEFPN, self).__init__() | |
self.out_channels = out_channels | |
self.ins_conv = nn.LayerList() | |
self.inp_conv = nn.LayerList() | |
self.intracl = False | |
if 'intracl' in kwargs.keys() and kwargs['intracl'] is True: | |
self.intracl = kwargs['intracl'] | |
self.incl1 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl2 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl3 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl4 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
for i in range(len(in_channels)): | |
self.ins_conv.append( | |
RSELayer( | |
in_channels[i], | |
out_channels, | |
kernel_size=1, | |
shortcut=shortcut)) | |
self.inp_conv.append( | |
RSELayer( | |
out_channels, | |
out_channels // 4, | |
kernel_size=3, | |
shortcut=shortcut)) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.ins_conv[3](c5) | |
in4 = self.ins_conv[2](c4) | |
in3 = self.ins_conv[1](c3) | |
in2 = self.ins_conv[0](c2) | |
out4 = in4 + F.upsample( | |
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16 | |
out3 = in3 + F.upsample( | |
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8 | |
out2 = in2 + F.upsample( | |
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4 | |
p5 = self.inp_conv[3](in5) | |
p4 = self.inp_conv[2](out4) | |
p3 = self.inp_conv[1](out3) | |
p2 = self.inp_conv[0](out2) | |
if self.intracl is True: | |
p5 = self.incl4(p5) | |
p4 = self.incl3(p4) | |
p3 = self.incl2(p3) | |
p2 = self.incl1(p2) | |
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) | |
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) | |
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) | |
fuse = paddle.concat([p5, p4, p3, p2], axis=1) | |
return fuse | |
class LKPAN(nn.Layer): | |
def __init__(self, in_channels, out_channels, mode='large', **kwargs): | |
super(LKPAN, self).__init__() | |
self.out_channels = out_channels | |
weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.ins_conv = nn.LayerList() | |
self.inp_conv = nn.LayerList() | |
# pan head | |
self.pan_head_conv = nn.LayerList() | |
self.pan_lat_conv = nn.LayerList() | |
if mode.lower() == 'lite': | |
p_layer = DSConv | |
elif mode.lower() == 'large': | |
p_layer = nn.Conv2D | |
else: | |
raise ValueError( | |
"mode can only be one of ['lite', 'large'], but received {}". | |
format(mode)) | |
for i in range(len(in_channels)): | |
self.ins_conv.append( | |
nn.Conv2D( | |
in_channels=in_channels[i], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False)) | |
self.inp_conv.append( | |
p_layer( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=9, | |
padding=4, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False)) | |
if i > 0: | |
self.pan_head_conv.append( | |
nn.Conv2D( | |
in_channels=self.out_channels // 4, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
stride=2, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False)) | |
self.pan_lat_conv.append( | |
p_layer( | |
in_channels=self.out_channels // 4, | |
out_channels=self.out_channels // 4, | |
kernel_size=9, | |
padding=4, | |
weight_attr=ParamAttr(initializer=weight_attr), | |
bias_attr=False)) | |
self.intracl = False | |
if 'intracl' in kwargs.keys() and kwargs['intracl'] is True: | |
self.intracl = kwargs['intracl'] | |
self.incl1 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl2 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl3 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl4 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.ins_conv[3](c5) | |
in4 = self.ins_conv[2](c4) | |
in3 = self.ins_conv[1](c3) | |
in2 = self.ins_conv[0](c2) | |
out4 = in4 + F.upsample( | |
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16 | |
out3 = in3 + F.upsample( | |
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8 | |
out2 = in2 + F.upsample( | |
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4 | |
f5 = self.inp_conv[3](in5) | |
f4 = self.inp_conv[2](out4) | |
f3 = self.inp_conv[1](out3) | |
f2 = self.inp_conv[0](out2) | |
pan3 = f3 + self.pan_head_conv[0](f2) | |
pan4 = f4 + self.pan_head_conv[1](pan3) | |
pan5 = f5 + self.pan_head_conv[2](pan4) | |
p2 = self.pan_lat_conv[0](f2) | |
p3 = self.pan_lat_conv[1](pan3) | |
p4 = self.pan_lat_conv[2](pan4) | |
p5 = self.pan_lat_conv[3](pan5) | |
if self.intracl is True: | |
p5 = self.incl4(p5) | |
p4 = self.incl3(p4) | |
p3 = self.incl2(p3) | |
p2 = self.incl1(p2) | |
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) | |
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) | |
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) | |
fuse = paddle.concat([p5, p4, p3, p2], axis=1) | |
return fuse | |
class ASFBlock(nn.Layer): | |
""" | |
This code is refered from: | |
https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py | |
""" | |
def __init__(self, in_channels, inter_channels, out_features_num=4): | |
""" | |
Adaptive Scale Fusion (ASF) block of DBNet++ | |
Args: | |
in_channels: the number of channels in the input data | |
inter_channels: the number of middle channels | |
out_features_num: the number of fused stages | |
""" | |
super(ASFBlock, self).__init__() | |
weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.in_channels = in_channels | |
self.inter_channels = inter_channels | |
self.out_features_num = out_features_num | |
self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1) | |
self.spatial_scale = nn.Sequential( | |
#Nx1xHxW | |
nn.Conv2D( | |
in_channels=1, | |
out_channels=1, | |
kernel_size=3, | |
bias_attr=False, | |
padding=1, | |
weight_attr=ParamAttr(initializer=weight_attr)), | |
nn.ReLU(), | |
nn.Conv2D( | |
in_channels=1, | |
out_channels=1, | |
kernel_size=1, | |
bias_attr=False, | |
weight_attr=ParamAttr(initializer=weight_attr)), | |
nn.Sigmoid()) | |
self.channel_scale = nn.Sequential( | |
nn.Conv2D( | |
in_channels=inter_channels, | |
out_channels=out_features_num, | |
kernel_size=1, | |
bias_attr=False, | |
weight_attr=ParamAttr(initializer=weight_attr)), | |
nn.Sigmoid()) | |
def forward(self, fuse_features, features_list): | |
fuse_features = self.conv(fuse_features) | |
spatial_x = paddle.mean(fuse_features, axis=1, keepdim=True) | |
attention_scores = self.spatial_scale(spatial_x) + fuse_features | |
attention_scores = self.channel_scale(attention_scores) | |
assert len(features_list) == self.out_features_num | |
out_list = [] | |
for i in range(self.out_features_num): | |
out_list.append(attention_scores[:, i:i + 1] * features_list[i]) | |
return paddle.concat(out_list, axis=1) |