Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class DeConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(DeConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.deconv = nn.Conv2DTranspose( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.deconv(x) | |
x = self.bn(x) | |
return x | |
class EASTFPN(nn.Layer): | |
def __init__(self, in_channels, model_name, **kwargs): | |
super(EASTFPN, self).__init__() | |
self.model_name = model_name | |
if self.model_name == "large": | |
self.out_channels = 128 | |
else: | |
self.out_channels = 64 | |
self.in_channels = in_channels[::-1] | |
self.h1_conv = ConvBNLayer( | |
in_channels=self.out_channels+self.in_channels[1], | |
out_channels=self.out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_h_1") | |
self.h2_conv = ConvBNLayer( | |
in_channels=self.out_channels+self.in_channels[2], | |
out_channels=self.out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_h_2") | |
self.h3_conv = ConvBNLayer( | |
in_channels=self.out_channels+self.in_channels[3], | |
out_channels=self.out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_h_3") | |
self.g0_deconv = DeConvBNLayer( | |
in_channels=self.in_channels[0], | |
out_channels=self.out_channels, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_g_0") | |
self.g1_deconv = DeConvBNLayer( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_g_1") | |
self.g2_deconv = DeConvBNLayer( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_g_2") | |
self.g3_conv = ConvBNLayer( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
if_act=True, | |
act='relu', | |
name="unet_g_3") | |
def forward(self, x): | |
f = x[::-1] | |
h = f[0] | |
g = self.g0_deconv(h) | |
h = paddle.concat([g, f[1]], axis=1) | |
h = self.h1_conv(h) | |
g = self.g1_deconv(h) | |
h = paddle.concat([g, f[2]], axis=1) | |
h = self.h2_conv(h) | |
g = self.g2_deconv(h) | |
h = paddle.concat([g, f[3]], axis=1) | |
h = self.h3_conv(h) | |
g = self.g3_conv(h) | |
return g |