Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py | |
""" | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
class UpBlock(nn.Layer): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
assert isinstance(in_channels, int) | |
assert isinstance(out_channels, int) | |
self.conv1x1 = nn.Conv2D( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.conv3x3 = nn.Conv2D( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.deconv = nn.Conv2DTranspose( | |
out_channels, out_channels, kernel_size=4, stride=2, padding=1) | |
def forward(self, x): | |
x = F.relu(self.conv1x1(x)) | |
x = F.relu(self.conv3x3(x)) | |
x = self.deconv(x) | |
return x | |
class FPN_UNet(nn.Layer): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
assert len(in_channels) == 4 | |
assert isinstance(out_channels, int) | |
self.out_channels = out_channels | |
blocks_out_channels = [out_channels] + [ | |
min(out_channels * 2**i, 256) for i in range(4) | |
] | |
blocks_in_channels = [blocks_out_channels[1]] + [ | |
in_channels[i] + blocks_out_channels[i + 2] for i in range(3) | |
] + [in_channels[3]] | |
self.up4 = nn.Conv2DTranspose( | |
blocks_in_channels[4], | |
blocks_out_channels[4], | |
kernel_size=4, | |
stride=2, | |
padding=1) | |
self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3]) | |
self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2]) | |
self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1]) | |
self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0]) | |
def forward(self, x): | |
""" | |
Args: | |
x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape | |
:math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5 | |
features respectively. :math:`C_i` should matches the number in | |
``in_channels``. | |
Returns: | |
Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and | |
:math:`W=4W_0`. | |
""" | |
c2, c3, c4, c5 = x | |
x = F.relu(self.up4(c5)) | |
x = paddle.concat([x, c4], axis=1) | |
x = F.relu(self.up_block3(x)) | |
x = paddle.concat([x, c3], axis=1) | |
x = F.relu(self.up_block2(x)) | |
x = paddle.concat([x, c2], axis=1) | |
x = F.relu(self.up_block1(x)) | |
x = self.up_block0(x) | |
return x | |