Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
is_vd_mode=False, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.is_vd_mode = is_vd_mode | |
self._pool2d_avg = nn.AvgPool2D( | |
kernel_size=2, stride=2, padding=0, ceil_mode=True) | |
self._conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + "_weights"), | |
bias_attr=False) | |
if name == "conv1": | |
bn_name = "bn_" + name | |
else: | |
bn_name = "bn" + name[3:] | |
self._batch_norm = nn.BatchNorm( | |
out_channels, | |
act=act, | |
param_attr=ParamAttr(name=bn_name + '_scale'), | |
bias_attr=ParamAttr(bn_name + '_offset'), | |
moving_mean_name=bn_name + '_mean', | |
moving_variance_name=bn_name + '_variance', | |
use_global_stats=False) | |
def forward(self, inputs): | |
y = self._conv(inputs) | |
y = self._batch_norm(y) | |
return y | |
class DeConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(DeConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.deconv = nn.Conv2DTranspose( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance", | |
use_global_stats=False) | |
def forward(self, x): | |
x = self.deconv(x) | |
x = self.bn(x) | |
return x | |
class PGFPN(nn.Layer): | |
def __init__(self, in_channels, **kwargs): | |
super(PGFPN, self).__init__() | |
num_inputs = [2048, 2048, 1024, 512, 256] | |
num_outputs = [256, 256, 192, 192, 128] | |
self.out_channels = 128 | |
self.conv_bn_layer_1 = ConvBNLayer( | |
in_channels=3, | |
out_channels=32, | |
kernel_size=3, | |
stride=1, | |
act=None, | |
name='FPN_d1') | |
self.conv_bn_layer_2 = ConvBNLayer( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
act=None, | |
name='FPN_d2') | |
self.conv_bn_layer_3 = ConvBNLayer( | |
in_channels=256, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
act=None, | |
name='FPN_d3') | |
self.conv_bn_layer_4 = ConvBNLayer( | |
in_channels=32, | |
out_channels=64, | |
kernel_size=3, | |
stride=2, | |
act=None, | |
name='FPN_d4') | |
self.conv_bn_layer_5 = ConvBNLayer( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name='FPN_d5') | |
self.conv_bn_layer_6 = ConvBNLayer( | |
in_channels=64, | |
out_channels=128, | |
kernel_size=3, | |
stride=2, | |
act=None, | |
name='FPN_d6') | |
self.conv_bn_layer_7 = ConvBNLayer( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name='FPN_d7') | |
self.conv_bn_layer_8 = ConvBNLayer( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name='FPN_d8') | |
self.conv_h0 = ConvBNLayer( | |
in_channels=num_inputs[0], | |
out_channels=num_outputs[0], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_h{}".format(0)) | |
self.conv_h1 = ConvBNLayer( | |
in_channels=num_inputs[1], | |
out_channels=num_outputs[1], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_h{}".format(1)) | |
self.conv_h2 = ConvBNLayer( | |
in_channels=num_inputs[2], | |
out_channels=num_outputs[2], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_h{}".format(2)) | |
self.conv_h3 = ConvBNLayer( | |
in_channels=num_inputs[3], | |
out_channels=num_outputs[3], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_h{}".format(3)) | |
self.conv_h4 = ConvBNLayer( | |
in_channels=num_inputs[4], | |
out_channels=num_outputs[4], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_h{}".format(4)) | |
self.dconv0 = DeConvBNLayer( | |
in_channels=num_outputs[0], | |
out_channels=num_outputs[0 + 1], | |
name="dconv_{}".format(0)) | |
self.dconv1 = DeConvBNLayer( | |
in_channels=num_outputs[1], | |
out_channels=num_outputs[1 + 1], | |
act=None, | |
name="dconv_{}".format(1)) | |
self.dconv2 = DeConvBNLayer( | |
in_channels=num_outputs[2], | |
out_channels=num_outputs[2 + 1], | |
act=None, | |
name="dconv_{}".format(2)) | |
self.dconv3 = DeConvBNLayer( | |
in_channels=num_outputs[3], | |
out_channels=num_outputs[3 + 1], | |
act=None, | |
name="dconv_{}".format(3)) | |
self.conv_g1 = ConvBNLayer( | |
in_channels=num_outputs[1], | |
out_channels=num_outputs[1], | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name="conv_g{}".format(1)) | |
self.conv_g2 = ConvBNLayer( | |
in_channels=num_outputs[2], | |
out_channels=num_outputs[2], | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name="conv_g{}".format(2)) | |
self.conv_g3 = ConvBNLayer( | |
in_channels=num_outputs[3], | |
out_channels=num_outputs[3], | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name="conv_g{}".format(3)) | |
self.conv_g4 = ConvBNLayer( | |
in_channels=num_outputs[4], | |
out_channels=num_outputs[4], | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
name="conv_g{}".format(4)) | |
self.convf = ConvBNLayer( | |
in_channels=num_outputs[4], | |
out_channels=num_outputs[4], | |
kernel_size=1, | |
stride=1, | |
act=None, | |
name="conv_f{}".format(4)) | |
def forward(self, x): | |
c0, c1, c2, c3, c4, c5, c6 = x | |
# FPN_Down_Fusion | |
f = [c0, c1, c2] | |
g = [None, None, None] | |
h = [None, None, None] | |
h[0] = self.conv_bn_layer_1(f[0]) | |
h[1] = self.conv_bn_layer_2(f[1]) | |
h[2] = self.conv_bn_layer_3(f[2]) | |
g[0] = self.conv_bn_layer_4(h[0]) | |
g[1] = paddle.add(g[0], h[1]) | |
g[1] = F.relu(g[1]) | |
g[1] = self.conv_bn_layer_5(g[1]) | |
g[1] = self.conv_bn_layer_6(g[1]) | |
g[2] = paddle.add(g[1], h[2]) | |
g[2] = F.relu(g[2]) | |
g[2] = self.conv_bn_layer_7(g[2]) | |
f_down = self.conv_bn_layer_8(g[2]) | |
# FPN UP Fusion | |
f1 = [c6, c5, c4, c3, c2] | |
g = [None, None, None, None, None] | |
h = [None, None, None, None, None] | |
h[0] = self.conv_h0(f1[0]) | |
h[1] = self.conv_h1(f1[1]) | |
h[2] = self.conv_h2(f1[2]) | |
h[3] = self.conv_h3(f1[3]) | |
h[4] = self.conv_h4(f1[4]) | |
g[0] = self.dconv0(h[0]) | |
g[1] = paddle.add(g[0], h[1]) | |
g[1] = F.relu(g[1]) | |
g[1] = self.conv_g1(g[1]) | |
g[1] = self.dconv1(g[1]) | |
g[2] = paddle.add(g[1], h[2]) | |
g[2] = F.relu(g[2]) | |
g[2] = self.conv_g2(g[2]) | |
g[2] = self.dconv2(g[2]) | |
g[3] = paddle.add(g[2], h[3]) | |
g[3] = F.relu(g[3]) | |
g[3] = self.conv_g3(g[3]) | |
g[3] = self.dconv3(g[3]) | |
g[4] = paddle.add(x=g[3], y=h[4]) | |
g[4] = F.relu(g[4]) | |
g[4] = self.conv_g4(g[4]) | |
f_up = self.convf(g[4]) | |
f_common = paddle.add(f_down, f_up) | |
f_common = F.relu(f_common) | |
return f_common | |