Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Code is refer from: | |
https://github.com/RuijieJ/pren/blob/main/Nets/Aggregation.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
class PoolAggregate(nn.Layer): | |
def __init__(self, n_r, d_in, d_middle=None, d_out=None): | |
super(PoolAggregate, self).__init__() | |
if not d_middle: | |
d_middle = d_in | |
if not d_out: | |
d_out = d_in | |
self.d_in = d_in | |
self.d_middle = d_middle | |
self.d_out = d_out | |
self.act = nn.Swish() | |
self.n_r = n_r | |
self.aggs = self._build_aggs() | |
def _build_aggs(self): | |
aggs = [] | |
for i in range(self.n_r): | |
aggs.append( | |
self.add_sublayer( | |
'{}'.format(i), | |
nn.Sequential( | |
('conv1', nn.Conv2D( | |
self.d_in, self.d_middle, 3, 2, 1, bias_attr=False) | |
), ('bn1', nn.BatchNorm(self.d_middle)), | |
('act', self.act), ('conv2', nn.Conv2D( | |
self.d_middle, self.d_out, 3, 2, 1, bias_attr=False | |
)), ('bn2', nn.BatchNorm(self.d_out))))) | |
return aggs | |
def forward(self, x): | |
b = x.shape[0] | |
outs = [] | |
for agg in self.aggs: | |
y = agg(x) | |
p = F.adaptive_avg_pool2d(y, 1) | |
outs.append(p.reshape((b, 1, self.d_out))) | |
out = paddle.concat(outs, 1) | |
return out | |
class WeightAggregate(nn.Layer): | |
def __init__(self, n_r, d_in, d_middle=None, d_out=None): | |
super(WeightAggregate, self).__init__() | |
if not d_middle: | |
d_middle = d_in | |
if not d_out: | |
d_out = d_in | |
self.n_r = n_r | |
self.d_out = d_out | |
self.act = nn.Swish() | |
self.conv_n = nn.Sequential( | |
('conv1', nn.Conv2D( | |
d_in, d_in, 3, 1, 1, | |
bias_attr=False)), ('bn1', nn.BatchNorm(d_in)), | |
('act1', self.act), ('conv2', nn.Conv2D( | |
d_in, n_r, 1, bias_attr=False)), ('bn2', nn.BatchNorm(n_r)), | |
('act2', nn.Sigmoid())) | |
self.conv_d = nn.Sequential( | |
('conv1', nn.Conv2D( | |
d_in, d_middle, 3, 1, 1, | |
bias_attr=False)), ('bn1', nn.BatchNorm(d_middle)), | |
('act1', self.act), ('conv2', nn.Conv2D( | |
d_middle, d_out, 1, | |
bias_attr=False)), ('bn2', nn.BatchNorm(d_out))) | |
def forward(self, x): | |
b, _, h, w = x.shape | |
hmaps = self.conv_n(x) | |
fmaps = self.conv_d(x) | |
r = paddle.bmm( | |
hmaps.reshape((b, self.n_r, h * w)), | |
fmaps.reshape((b, self.d_out, h * w)).transpose((0, 2, 1))) | |
return r | |
class GCN(nn.Layer): | |
def __init__(self, d_in, n_in, d_out=None, n_out=None, dropout=0.1): | |
super(GCN, self).__init__() | |
if not d_out: | |
d_out = d_in | |
if not n_out: | |
n_out = d_in | |
self.conv_n = nn.Conv1D(n_in, n_out, 1) | |
self.linear = nn.Linear(d_in, d_out) | |
self.dropout = nn.Dropout(dropout) | |
self.act = nn.Swish() | |
def forward(self, x): | |
x = self.conv_n(x) | |
x = self.dropout(self.linear(x)) | |
return self.act(x) | |
class PRENFPN(nn.Layer): | |
def __init__(self, in_channels, n_r, d_model, max_len, dropout): | |
super(PRENFPN, self).__init__() | |
assert len(in_channels) == 3, "in_channels' length must be 3." | |
c1, c2, c3 = in_channels # the depths are from big to small | |
# build fpn | |
assert d_model % 3 == 0, "{} can't be divided by 3.".format(d_model) | |
self.agg_p1 = PoolAggregate(n_r, c1, d_out=d_model // 3) | |
self.agg_p2 = PoolAggregate(n_r, c2, d_out=d_model // 3) | |
self.agg_p3 = PoolAggregate(n_r, c3, d_out=d_model // 3) | |
self.agg_w1 = WeightAggregate(n_r, c1, 4 * c1, d_model // 3) | |
self.agg_w2 = WeightAggregate(n_r, c2, 4 * c2, d_model // 3) | |
self.agg_w3 = WeightAggregate(n_r, c3, 4 * c3, d_model // 3) | |
self.gcn_pool = GCN(d_model, n_r, d_model, max_len, dropout) | |
self.gcn_weight = GCN(d_model, n_r, d_model, max_len, dropout) | |
self.out_channels = d_model | |
def forward(self, inputs): | |
f3, f5, f7 = inputs | |
rp1 = self.agg_p1(f3) | |
rp2 = self.agg_p2(f5) | |
rp3 = self.agg_p3(f7) | |
rp = paddle.concat([rp1, rp2, rp3], 2) # [b,nr,d] | |
rw1 = self.agg_w1(f3) | |
rw2 = self.agg_w2(f5) | |
rw3 = self.agg_w3(f7) | |
rw = paddle.concat([rw1, rw2, rw3], 2) # [b,nr,d] | |
y1 = self.gcn_pool(rp) | |
y2 = self.gcn_weight(rw) | |
y = 0.5 * (y1 + y2) | |
return y # [b,max_len,d] | |