Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr | |
from ppocr.modeling.backbones.rec_svtrnet import Block, ConvBNLayer, trunc_normal_, zeros_, ones_ | |
class Im2Seq(nn.Layer): | |
def __init__(self, in_channels, **kwargs): | |
super().__init__() | |
self.out_channels = in_channels | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert H == 1 | |
x = x.squeeze(axis=2) | |
x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels) | |
return x | |
class EncoderWithRNN(nn.Layer): | |
def __init__(self, in_channels, hidden_size): | |
super(EncoderWithRNN, self).__init__() | |
self.out_channels = hidden_size * 2 | |
self.lstm = nn.LSTM( | |
in_channels, hidden_size, direction='bidirectional', num_layers=2) | |
def forward(self, x): | |
x, _ = self.lstm(x) | |
return x | |
class BidirectionalLSTM(nn.Layer): | |
def __init__(self, | |
input_size, | |
hidden_size, | |
output_size=None, | |
num_layers=1, | |
dropout=0, | |
direction=False, | |
time_major=False, | |
with_linear=False): | |
super(BidirectionalLSTM, self).__init__() | |
self.with_linear = with_linear | |
self.rnn = nn.LSTM( | |
input_size, | |
hidden_size, | |
num_layers=num_layers, | |
dropout=dropout, | |
direction=direction, | |
time_major=time_major) | |
# text recognition the specified structure LSTM with linear | |
if self.with_linear: | |
self.linear = nn.Linear(hidden_size * 2, output_size) | |
def forward(self, input_feature): | |
recurrent, _ = self.rnn( | |
input_feature | |
) # batch_size x T x input_size -> batch_size x T x (2*hidden_size) | |
if self.with_linear: | |
output = self.linear(recurrent) # batch_size x T x output_size | |
return output | |
return recurrent | |
class EncoderWithCascadeRNN(nn.Layer): | |
def __init__(self, | |
in_channels, | |
hidden_size, | |
out_channels, | |
num_layers=2, | |
with_linear=False): | |
super(EncoderWithCascadeRNN, self).__init__() | |
self.out_channels = out_channels[-1] | |
self.encoder = nn.LayerList([ | |
BidirectionalLSTM( | |
in_channels if i == 0 else out_channels[i - 1], | |
hidden_size, | |
output_size=out_channels[i], | |
num_layers=1, | |
direction='bidirectional', | |
with_linear=with_linear) for i in range(num_layers) | |
]) | |
def forward(self, x): | |
for i, l in enumerate(self.encoder): | |
x = l(x) | |
return x | |
class EncoderWithFC(nn.Layer): | |
def __init__(self, in_channels, hidden_size): | |
super(EncoderWithFC, self).__init__() | |
self.out_channels = hidden_size | |
weight_attr, bias_attr = get_para_bias_attr( | |
l2_decay=0.00001, k=in_channels) | |
self.fc = nn.Linear( | |
in_channels, | |
hidden_size, | |
weight_attr=weight_attr, | |
bias_attr=bias_attr, | |
name='reduce_encoder_fea') | |
def forward(self, x): | |
x = self.fc(x) | |
return x | |
class EncoderWithSVTR(nn.Layer): | |
def __init__( | |
self, | |
in_channels, | |
dims=64, # XS | |
depth=2, | |
hidden_dims=120, | |
use_guide=False, | |
num_heads=8, | |
qkv_bias=True, | |
mlp_ratio=2.0, | |
drop_rate=0.1, | |
attn_drop_rate=0.1, | |
drop_path=0., | |
kernel_size=[3, 3], | |
qk_scale=None): | |
super(EncoderWithSVTR, self).__init__() | |
self.depth = depth | |
self.use_guide = use_guide | |
self.conv1 = ConvBNLayer( | |
in_channels, | |
in_channels // 8, | |
kernel_size=kernel_size, | |
padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
act=nn.Swish) | |
self.conv2 = ConvBNLayer( | |
in_channels // 8, hidden_dims, kernel_size=1, act=nn.Swish) | |
self.svtr_block = nn.LayerList([ | |
Block( | |
dim=hidden_dims, | |
num_heads=num_heads, | |
mixer='Global', | |
HW=None, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=nn.Swish, | |
attn_drop=attn_drop_rate, | |
drop_path=drop_path, | |
norm_layer='nn.LayerNorm', | |
epsilon=1e-05, | |
prenorm=False) for i in range(depth) | |
]) | |
self.norm = nn.LayerNorm(hidden_dims, epsilon=1e-6) | |
self.conv3 = ConvBNLayer( | |
hidden_dims, in_channels, kernel_size=1, act=nn.Swish) | |
# last conv-nxn, the input is concat of input tensor and conv3 output tensor | |
self.conv4 = ConvBNLayer( | |
2 * in_channels, | |
in_channels // 8, | |
kernel_size=kernel_size, | |
padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
act=nn.Swish) | |
self.conv1x1 = ConvBNLayer( | |
in_channels // 8, dims, kernel_size=1, act=nn.Swish) | |
self.out_channels = dims | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
def forward(self, x): | |
# for use guide | |
if self.use_guide: | |
z = x.clone() | |
z.stop_gradient = True | |
else: | |
z = x | |
# for short cut | |
h = z | |
# reduce dim | |
z = self.conv1(z) | |
z = self.conv2(z) | |
# SVTR global block | |
B, C, H, W = z.shape | |
z = z.flatten(2).transpose([0, 2, 1]) | |
for blk in self.svtr_block: | |
z = blk(z) | |
z = self.norm(z) | |
# last stage | |
z = z.reshape([0, H, W, C]).transpose([0, 3, 1, 2]) | |
z = self.conv3(z) | |
z = paddle.concat((h, z), axis=1) | |
z = self.conv1x1(self.conv4(z)) | |
return z | |
class SequenceEncoder(nn.Layer): | |
def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs): | |
super(SequenceEncoder, self).__init__() | |
self.encoder_reshape = Im2Seq(in_channels) | |
self.out_channels = self.encoder_reshape.out_channels | |
self.encoder_type = encoder_type | |
if encoder_type == 'reshape': | |
self.only_reshape = True | |
else: | |
support_encoder_dict = { | |
'reshape': Im2Seq, | |
'fc': EncoderWithFC, | |
'rnn': EncoderWithRNN, | |
'svtr': EncoderWithSVTR, | |
'cascadernn': EncoderWithCascadeRNN | |
} | |
assert encoder_type in support_encoder_dict, '{} must in {}'.format( | |
encoder_type, support_encoder_dict.keys()) | |
if encoder_type == "svtr": | |
self.encoder = support_encoder_dict[encoder_type]( | |
self.encoder_reshape.out_channels, **kwargs) | |
elif encoder_type == 'cascadernn': | |
self.encoder = support_encoder_dict[encoder_type]( | |
self.encoder_reshape.out_channels, hidden_size, **kwargs) | |
else: | |
self.encoder = support_encoder_dict[encoder_type]( | |
self.encoder_reshape.out_channels, hidden_size) | |
self.out_channels = self.encoder.out_channels | |
self.only_reshape = False | |
def forward(self, x): | |
if self.encoder_type != 'svtr': | |
x = self.encoder_reshape(x) | |
if not self.only_reshape: | |
x = self.encoder(x) | |
return x | |
else: | |
x = self.encoder(x) | |
x = self.encoder_reshape(x) | |
return x | |