Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class DeConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups=1, | |
if_act=True, | |
act=None, | |
name=None): | |
super(DeConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.deconv = nn.Conv2DTranspose( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + '_weights'), | |
bias_attr=False) | |
self.bn = nn.BatchNorm( | |
num_channels=out_channels, | |
act=act, | |
param_attr=ParamAttr(name="bn_" + name + "_scale"), | |
bias_attr=ParamAttr(name="bn_" + name + "_offset"), | |
moving_mean_name="bn_" + name + "_mean", | |
moving_variance_name="bn_" + name + "_variance") | |
def forward(self, x): | |
x = self.deconv(x) | |
x = self.bn(x) | |
return x | |
class FPN_Up_Fusion(nn.Layer): | |
def __init__(self, in_channels): | |
super(FPN_Up_Fusion, self).__init__() | |
in_channels = in_channels[::-1] | |
out_channels = [256, 256, 192, 192, 128] | |
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0') | |
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1') | |
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2') | |
self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3') | |
self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4') | |
self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0') | |
self.g1_conv = nn.Sequential( | |
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'), | |
DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2') | |
) | |
self.g2_conv = nn.Sequential( | |
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'), | |
DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2') | |
) | |
self.g3_conv = nn.Sequential( | |
ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'), | |
DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2') | |
) | |
self.g4_conv = nn.Sequential( | |
ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'), | |
ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2') | |
) | |
def _add_relu(self, x1, x2): | |
x = paddle.add(x=x1, y=x2) | |
x = F.relu(x) | |
return x | |
def forward(self, x): | |
f = x[2:][::-1] | |
h0 = self.h0_conv(f[0]) | |
h1 = self.h1_conv(f[1]) | |
h2 = self.h2_conv(f[2]) | |
h3 = self.h3_conv(f[3]) | |
h4 = self.h4_conv(f[4]) | |
g0 = self.g0_conv(h0) | |
g1 = self._add_relu(g0, h1) | |
g1 = self.g1_conv(g1) | |
g2 = self.g2_conv(self._add_relu(g1, h2)) | |
g3 = self.g3_conv(self._add_relu(g2, h3)) | |
g4 = self.g4_conv(self._add_relu(g3, h4)) | |
return g4 | |
class FPN_Down_Fusion(nn.Layer): | |
def __init__(self, in_channels): | |
super(FPN_Down_Fusion, self).__init__() | |
out_channels = [32, 64, 128] | |
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0') | |
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1') | |
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2') | |
self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0') | |
self.g1_conv = nn.Sequential( | |
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'), | |
ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2') | |
) | |
self.g2_conv = nn.Sequential( | |
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'), | |
ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2') | |
) | |
def forward(self, x): | |
f = x[:3] | |
h0 = self.h0_conv(f[0]) | |
h1 = self.h1_conv(f[1]) | |
h2 = self.h2_conv(f[2]) | |
g0 = self.g0_conv(h0) | |
g1 = paddle.add(x=g0, y=h1) | |
g1 = F.relu(g1) | |
g1 = self.g1_conv(g1) | |
g2 = paddle.add(x=g1, y=h2) | |
g2 = F.relu(g2) | |
g2 = self.g2_conv(g2) | |
return g2 | |
class Cross_Attention(nn.Layer): | |
def __init__(self, in_channels): | |
super(Cross_Attention, self).__init__() | |
self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta') | |
self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi') | |
self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g') | |
self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight') | |
self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc') | |
self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight') | |
self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc') | |
self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn') | |
def _cal_fweight(self, f, shape): | |
f_theta, f_phi, f_g = f | |
#flatten | |
f_theta = paddle.transpose(f_theta, [0, 2, 3, 1]) | |
f_theta = paddle.reshape(f_theta, [shape[0] * shape[1], shape[2], 128]) | |
f_phi = paddle.transpose(f_phi, [0, 2, 3, 1]) | |
f_phi = paddle.reshape(f_phi, [shape[0] * shape[1], shape[2], 128]) | |
f_g = paddle.transpose(f_g, [0, 2, 3, 1]) | |
f_g = paddle.reshape(f_g, [shape[0] * shape[1], shape[2], 128]) | |
#correlation | |
f_attn = paddle.matmul(f_theta, paddle.transpose(f_phi, [0, 2, 1])) | |
#scale | |
f_attn = f_attn / (128**0.5) | |
f_attn = F.softmax(f_attn) | |
#weighted sum | |
f_weight = paddle.matmul(f_attn, f_g) | |
f_weight = paddle.reshape( | |
f_weight, [shape[0], shape[1], shape[2], 128]) | |
return f_weight | |
def forward(self, f_common): | |
f_shape = paddle.shape(f_common) | |
# print('f_shape: ', f_shape) | |
f_theta = self.theta_conv(f_common) | |
f_phi = self.phi_conv(f_common) | |
f_g = self.g_conv(f_common) | |
######## horizon ######## | |
fh_weight = self._cal_fweight([f_theta, f_phi, f_g], | |
[f_shape[0], f_shape[2], f_shape[3]]) | |
fh_weight = paddle.transpose(fh_weight, [0, 3, 1, 2]) | |
fh_weight = self.fh_weight_conv(fh_weight) | |
#short cut | |
fh_sc = self.fh_sc_conv(f_common) | |
f_h = F.relu(fh_weight + fh_sc) | |
######## vertical ######## | |
fv_theta = paddle.transpose(f_theta, [0, 1, 3, 2]) | |
fv_phi = paddle.transpose(f_phi, [0, 1, 3, 2]) | |
fv_g = paddle.transpose(f_g, [0, 1, 3, 2]) | |
fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g], | |
[f_shape[0], f_shape[3], f_shape[2]]) | |
fv_weight = paddle.transpose(fv_weight, [0, 3, 2, 1]) | |
fv_weight = self.fv_weight_conv(fv_weight) | |
#short cut | |
fv_sc = self.fv_sc_conv(f_common) | |
f_v = F.relu(fv_weight + fv_sc) | |
######## merge ######## | |
f_attn = paddle.concat([f_h, f_v], axis=1) | |
f_attn = self.f_attn_conv(f_attn) | |
return f_attn | |
class SASTFPN(nn.Layer): | |
def __init__(self, in_channels, with_cab=False, **kwargs): | |
super(SASTFPN, self).__init__() | |
self.in_channels = in_channels | |
self.with_cab = with_cab | |
self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels) | |
self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels) | |
self.out_channels = 128 | |
self.cross_attention = Cross_Attention(self.out_channels) | |
def forward(self, x): | |
#down fpn | |
f_down = self.FPN_Down_Fusion(x) | |
#up fpn | |
f_up = self.FPN_Up_Fusion(x) | |
#fusion | |
f_common = paddle.add(x=f_down, y=f_up) | |
f_common = F.relu(f_common) | |
if self.with_cab: | |
# print('enhence f_common with CAB.') | |
f_common = self.cross_attention(f_common) | |
return f_common | |