Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn, ParamAttr | |
from paddle.nn import functional as F | |
import numpy as np | |
from .tps_spatial_transformer import TPSSpatialTransformer | |
def conv3x3_block(in_channels, out_channels, stride=1): | |
n = 3 * 3 * out_channels | |
w = math.sqrt(2. / n) | |
conv_layer = nn.Conv2D( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
weight_attr=nn.initializer.Normal( | |
mean=0.0, std=w), | |
bias_attr=nn.initializer.Constant(0)) | |
block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU()) | |
return block | |
class STN(nn.Layer): | |
def __init__(self, in_channels, num_ctrlpoints, activation='none'): | |
super(STN, self).__init__() | |
self.in_channels = in_channels | |
self.num_ctrlpoints = num_ctrlpoints | |
self.activation = activation | |
self.stn_convnet = nn.Sequential( | |
conv3x3_block(in_channels, 32), #32x64 | |
nn.MaxPool2D( | |
kernel_size=2, stride=2), | |
conv3x3_block(32, 64), #16x32 | |
nn.MaxPool2D( | |
kernel_size=2, stride=2), | |
conv3x3_block(64, 128), # 8*16 | |
nn.MaxPool2D( | |
kernel_size=2, stride=2), | |
conv3x3_block(128, 256), # 4*8 | |
nn.MaxPool2D( | |
kernel_size=2, stride=2), | |
conv3x3_block(256, 256), # 2*4, | |
nn.MaxPool2D( | |
kernel_size=2, stride=2), | |
conv3x3_block(256, 256)) # 1*2 | |
self.stn_fc1 = nn.Sequential( | |
nn.Linear( | |
2 * 256, | |
512, | |
weight_attr=nn.initializer.Normal(0, 0.001), | |
bias_attr=nn.initializer.Constant(0)), | |
nn.BatchNorm1D(512), | |
nn.ReLU()) | |
fc2_bias = self.init_stn() | |
self.stn_fc2 = nn.Linear( | |
512, | |
num_ctrlpoints * 2, | |
weight_attr=nn.initializer.Constant(0.0), | |
bias_attr=nn.initializer.Assign(fc2_bias)) | |
def init_stn(self): | |
margin = 0.01 | |
sampling_num_per_side = int(self.num_ctrlpoints / 2) | |
ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side) | |
ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin | |
ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
ctrl_points = np.concatenate( | |
[ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32) | |
if self.activation == 'none': | |
pass | |
elif self.activation == 'sigmoid': | |
ctrl_points = -np.log(1. / ctrl_points - 1.) | |
ctrl_points = paddle.to_tensor(ctrl_points) | |
fc2_bias = paddle.reshape( | |
ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]]) | |
return fc2_bias | |
def forward(self, x): | |
x = self.stn_convnet(x) | |
batch_size, _, h, w = x.shape | |
x = paddle.reshape(x, shape=(batch_size, -1)) | |
img_feat = self.stn_fc1(x) | |
x = self.stn_fc2(0.1 * img_feat) | |
if self.activation == 'sigmoid': | |
x = F.sigmoid(x) | |
x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2]) | |
return img_feat, x | |
class STN_ON(nn.Layer): | |
def __init__(self, in_channels, tps_inputsize, tps_outputsize, | |
num_control_points, tps_margins, stn_activation): | |
super(STN_ON, self).__init__() | |
self.tps = TPSSpatialTransformer( | |
output_image_size=tuple(tps_outputsize), | |
num_control_points=num_control_points, | |
margins=tuple(tps_margins)) | |
self.stn_head = STN(in_channels=in_channels, | |
num_ctrlpoints=num_control_points, | |
activation=stn_activation) | |
self.tps_inputsize = tps_inputsize | |
self.out_channels = in_channels | |
def forward(self, image): | |
stn_input = paddle.nn.functional.interpolate( | |
image, self.tps_inputsize, mode="bilinear", align_corners=True) | |
stn_img_feat, ctrl_points = self.stn_head(stn_input) | |
x, _ = self.tps(image, ctrl_points) | |
return x | |