Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/FudanVI/FudanOCR/blob/main/scene-text-telescope/model/tbsrn.py | |
""" | |
import math | |
import warnings | |
import numpy as np | |
import paddle | |
from paddle import nn | |
import string | |
warnings.filterwarnings("ignore") | |
from .tps_spatial_transformer import TPSSpatialTransformer | |
from .stn import STN as STNHead | |
from .tsrn import GruBlock, mish, UpsampleBLock | |
from ppocr.modeling.heads.sr_rensnet_transformer import Transformer, LayerNorm, \ | |
PositionwiseFeedForward, MultiHeadedAttention | |
def positionalencoding2d(d_model, height, width): | |
""" | |
:param d_model: dimension of the model | |
:param height: height of the positions | |
:param width: width of the positions | |
:return: d_model*height*width position matrix | |
""" | |
if d_model % 4 != 0: | |
raise ValueError("Cannot use sin/cos positional encoding with " | |
"odd dimension (got dim={:d})".format(d_model)) | |
pe = paddle.zeros([d_model, height, width]) | |
# Each dimension use half of d_model | |
d_model = int(d_model / 2) | |
div_term = paddle.exp( | |
paddle.arange(0., d_model, 2, dtype='int64') * -(math.log(10000.0) / d_model)) | |
pos_w = paddle.arange(0., width, dtype='float32').unsqueeze(1) | |
pos_h = paddle.arange(0., height, dtype='float32').unsqueeze(1) | |
pe[0:d_model:2, :, :] = paddle.sin(pos_w * div_term).transpose( | |
[1, 0]).unsqueeze(1).tile([1, height, 1]) | |
pe[1:d_model:2, :, :] = paddle.cos(pos_w * div_term).transpose( | |
[1, 0]).unsqueeze(1).tile([1, height, 1]) | |
pe[d_model::2, :, :] = paddle.sin(pos_h * div_term).transpose( | |
[1, 0]).unsqueeze(2).tile([1, 1, width]) | |
pe[d_model + 1::2, :, :] = paddle.cos(pos_h * div_term).transpose( | |
[1, 0]).unsqueeze(2).tile([1, 1, width]) | |
return pe | |
class FeatureEnhancer(nn.Layer): | |
def __init__(self): | |
super(FeatureEnhancer, self).__init__() | |
self.multihead = MultiHeadedAttention(h=4, d_model=128, dropout=0.1) | |
self.mul_layernorm1 = LayerNorm(features=128) | |
self.pff = PositionwiseFeedForward(128, 128) | |
self.mul_layernorm3 = LayerNorm(features=128) | |
self.linear = nn.Linear(128, 64) | |
def forward(self, conv_feature): | |
''' | |
text : (batch, seq_len, embedding_size) | |
global_info: (batch, embedding_size, 1, 1) | |
conv_feature: (batch, channel, H, W) | |
''' | |
batch = paddle.shape(conv_feature)[0] | |
position2d = positionalencoding2d( | |
64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024]) | |
position2d = position2d.tile([batch, 1, 1]) | |
conv_feature = paddle.concat([conv_feature, position2d], | |
1) # batch, 128(64+64), 32, 128 | |
result = conv_feature.transpose([0, 2, 1]) | |
origin_result = result | |
result = self.mul_layernorm1(origin_result + self.multihead( | |
result, result, result, mask=None)[0]) | |
origin_result = result | |
result = self.mul_layernorm3(origin_result + self.pff(result)) | |
result = self.linear(result) | |
return result.transpose([0, 2, 1]) | |
def str_filt(str_, voc_type): | |
alpha_dict = { | |
'digit': string.digits, | |
'lower': string.digits + string.ascii_lowercase, | |
'upper': string.digits + string.ascii_letters, | |
'all': string.digits + string.ascii_letters + string.punctuation | |
} | |
if voc_type == 'lower': | |
str_ = str_.lower() | |
for char in str_: | |
if char not in alpha_dict[voc_type]: | |
str_ = str_.replace(char, '') | |
str_ = str_.lower() | |
return str_ | |
class TBSRN(nn.Layer): | |
def __init__(self, | |
in_channels=3, | |
scale_factor=2, | |
width=128, | |
height=32, | |
STN=True, | |
srb_nums=5, | |
mask=False, | |
hidden_units=32, | |
infer_mode=False): | |
super(TBSRN, self).__init__() | |
in_planes = 3 | |
if mask: | |
in_planes = 4 | |
assert math.log(scale_factor, 2) % 1 == 0 | |
upsample_block_num = int(math.log(scale_factor, 2)) | |
self.block1 = nn.Sequential( | |
nn.Conv2D( | |
in_planes, 2 * hidden_units, kernel_size=9, padding=4), | |
nn.PReLU() | |
# nn.ReLU() | |
) | |
self.srb_nums = srb_nums | |
for i in range(srb_nums): | |
setattr(self, 'block%d' % (i + 2), | |
RecurrentResidualBlock(2 * hidden_units)) | |
setattr( | |
self, | |
'block%d' % (srb_nums + 2), | |
nn.Sequential( | |
nn.Conv2D( | |
2 * hidden_units, | |
2 * hidden_units, | |
kernel_size=3, | |
padding=1), | |
nn.BatchNorm2D(2 * hidden_units))) | |
# self.non_local = NonLocalBlock2D(64, 64) | |
block_ = [ | |
UpsampleBLock(2 * hidden_units, 2) | |
for _ in range(upsample_block_num) | |
] | |
block_.append( | |
nn.Conv2D( | |
2 * hidden_units, in_planes, kernel_size=9, padding=4)) | |
setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_)) | |
self.tps_inputsize = [height // scale_factor, width // scale_factor] | |
tps_outputsize = [height // scale_factor, width // scale_factor] | |
num_control_points = 20 | |
tps_margins = [0.05, 0.05] | |
self.stn = STN | |
self.out_channels = in_channels | |
if self.stn: | |
self.tps = TPSSpatialTransformer( | |
output_image_size=tuple(tps_outputsize), | |
num_control_points=num_control_points, | |
margins=tuple(tps_margins)) | |
self.stn_head = STNHead( | |
in_channels=in_planes, | |
num_ctrlpoints=num_control_points, | |
activation='none') | |
self.infer_mode = infer_mode | |
self.english_alphabet = '-0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
self.english_dict = {} | |
for index in range(len(self.english_alphabet)): | |
self.english_dict[self.english_alphabet[index]] = index | |
transformer = Transformer( | |
alphabet='-0123456789abcdefghijklmnopqrstuvwxyz') | |
self.transformer = transformer | |
for param in self.transformer.parameters(): | |
param.trainable = False | |
def label_encoder(self, label): | |
batch = len(label) | |
length = [len(i) for i in label] | |
length_tensor = paddle.to_tensor(length, dtype='int64') | |
max_length = max(length) | |
input_tensor = np.zeros((batch, max_length)) | |
for i in range(batch): | |
for j in range(length[i] - 1): | |
input_tensor[i][j + 1] = self.english_dict[label[i][j]] | |
text_gt = [] | |
for i in label: | |
for j in i: | |
text_gt.append(self.english_dict[j]) | |
text_gt = paddle.to_tensor(text_gt, dtype='int64') | |
input_tensor = paddle.to_tensor(input_tensor, dtype='int64') | |
return length_tensor, input_tensor, text_gt | |
def forward(self, x): | |
output = {} | |
if self.infer_mode: | |
output["lr_img"] = x | |
y = x | |
else: | |
output["lr_img"] = x[0] | |
output["hr_img"] = x[1] | |
y = x[0] | |
if self.stn and self.training: | |
_, ctrl_points_x = self.stn_head(y) | |
y, _ = self.tps(y, ctrl_points_x) | |
block = {'1': self.block1(y)} | |
for i in range(self.srb_nums + 1): | |
block[str(i + 2)] = getattr(self, | |
'block%d' % (i + 2))(block[str(i + 1)]) | |
block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \ | |
((block['1'] + block[str(self.srb_nums + 2)])) | |
sr_img = paddle.tanh(block[str(self.srb_nums + 3)]) | |
output["sr_img"] = sr_img | |
if self.training: | |
hr_img = x[1] | |
# add transformer | |
label = [str_filt(i, 'lower') + '-' for i in x[2]] | |
length_tensor, input_tensor, text_gt = self.label_encoder(label) | |
hr_pred, word_attention_map_gt, hr_correct_list = self.transformer( | |
hr_img, length_tensor, input_tensor) | |
sr_pred, word_attention_map_pred, sr_correct_list = self.transformer( | |
sr_img, length_tensor, input_tensor) | |
output["hr_img"] = hr_img | |
output["hr_pred"] = hr_pred | |
output["text_gt"] = text_gt | |
output["word_attention_map_gt"] = word_attention_map_gt | |
output["sr_pred"] = sr_pred | |
output["word_attention_map_pred"] = word_attention_map_pred | |
return output | |
class RecurrentResidualBlock(nn.Layer): | |
def __init__(self, channels): | |
super(RecurrentResidualBlock, self).__init__() | |
self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) | |
self.bn1 = nn.BatchNorm2D(channels) | |
self.gru1 = GruBlock(channels, channels) | |
# self.prelu = nn.ReLU() | |
self.prelu = mish() | |
self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) | |
self.bn2 = nn.BatchNorm2D(channels) | |
self.gru2 = GruBlock(channels, channels) | |
self.feature_enhancer = FeatureEnhancer() | |
for p in self.parameters(): | |
if p.dim() > 1: | |
paddle.nn.initializer.XavierUniform(p) | |
def forward(self, x): | |
residual = self.conv1(x) | |
residual = self.bn1(residual) | |
residual = self.prelu(residual) | |
residual = self.conv2(residual) | |
residual = self.bn2(residual) | |
size = paddle.shape(residual) | |
residual = residual.reshape([size[0], size[1], -1]) | |
residual = self.feature_enhancer(residual) | |
residual = residual.reshape([size[0], size[1], size[2], size[3]]) | |
return x + residual | |