Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import nn, ParamAttr | |
from paddle.nn import functional as F | |
import numpy as np | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
act=None, | |
name=None): | |
super(ConvBNLayer, self).__init__() | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
weight_attr=ParamAttr(name=name + "_weights"), | |
bias_attr=False) | |
bn_name = "bn_" + name | |
self.bn = nn.BatchNorm( | |
out_channels, | |
act=act, | |
param_attr=ParamAttr(name=bn_name + '_scale'), | |
bias_attr=ParamAttr(bn_name + '_offset'), | |
moving_mean_name=bn_name + '_mean', | |
moving_variance_name=bn_name + '_variance') | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class LocalizationNetwork(nn.Layer): | |
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): | |
super(LocalizationNetwork, self).__init__() | |
self.F = num_fiducial | |
F = num_fiducial | |
if model_name == "large": | |
num_filters_list = [64, 128, 256, 512] | |
fc_dim = 256 | |
else: | |
num_filters_list = [16, 32, 64, 128] | |
fc_dim = 64 | |
self.block_list = [] | |
for fno in range(0, len(num_filters_list)): | |
num_filters = num_filters_list[fno] | |
name = "loc_conv%d" % fno | |
conv = self.add_sublayer( | |
name, | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=num_filters, | |
kernel_size=3, | |
act='relu', | |
name=name)) | |
self.block_list.append(conv) | |
if fno == len(num_filters_list) - 1: | |
pool = nn.AdaptiveAvgPool2D(1) | |
else: | |
pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | |
in_channels = num_filters | |
self.block_list.append(pool) | |
name = "loc_fc1" | |
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0) | |
self.fc1 = nn.Linear( | |
in_channels, | |
fc_dim, | |
weight_attr=ParamAttr( | |
learning_rate=loc_lr, | |
name=name + "_w", | |
initializer=nn.initializer.Uniform(-stdv, stdv)), | |
bias_attr=ParamAttr(name=name + '.b_0'), | |
name=name) | |
# Init fc2 in LocalizationNetwork | |
initial_bias = self.get_initial_fiducials() | |
initial_bias = initial_bias.reshape(-1) | |
name = "loc_fc2" | |
param_attr = ParamAttr( | |
learning_rate=loc_lr, | |
initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])), | |
name=name + "_w") | |
bias_attr = ParamAttr( | |
learning_rate=loc_lr, | |
initializer=nn.initializer.Assign(initial_bias), | |
name=name + "_b") | |
self.fc2 = nn.Linear( | |
fc_dim, | |
F * 2, | |
weight_attr=param_attr, | |
bias_attr=bias_attr, | |
name=name) | |
self.out_channels = F * 2 | |
def forward(self, x): | |
""" | |
Estimating parameters of geometric transformation | |
Args: | |
image: input | |
Return: | |
batch_C_prime: the matrix of the geometric transformation | |
""" | |
B = x.shape[0] | |
i = 0 | |
for block in self.block_list: | |
x = block(x) | |
x = x.squeeze(axis=2).squeeze(axis=2) | |
x = self.fc1(x) | |
x = F.relu(x) | |
x = self.fc2(x) | |
x = x.reshape(shape=[-1, self.F, 2]) | |
return x | |
def get_initial_fiducials(self): | |
""" see RARE paper Fig. 6 (a) """ | |
F = self.F | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) | |
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
return initial_bias | |
class GridGenerator(nn.Layer): | |
def __init__(self, in_channels, num_fiducial): | |
super(GridGenerator, self).__init__() | |
self.eps = 1e-6 | |
self.F = num_fiducial | |
name = "ex_fc" | |
initializer = nn.initializer.Constant(value=0.0) | |
param_attr = ParamAttr( | |
learning_rate=0.0, initializer=initializer, name=name + "_w") | |
bias_attr = ParamAttr( | |
learning_rate=0.0, initializer=initializer, name=name + "_b") | |
self.fc = nn.Linear( | |
in_channels, | |
6, | |
weight_attr=param_attr, | |
bias_attr=bias_attr, | |
name=name) | |
def forward(self, batch_C_prime, I_r_size): | |
""" | |
Generate the grid for the grid_sampler. | |
Args: | |
batch_C_prime: the matrix of the geometric transformation | |
I_r_size: the shape of the input image | |
Return: | |
batch_P_prime: the grid for the grid_sampler | |
""" | |
C = self.build_C_paddle() | |
P = self.build_P_paddle(I_r_size) | |
inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32') | |
P_hat_tensor = self.build_P_hat_paddle( | |
C, paddle.to_tensor(P)).astype('float32') | |
inv_delta_C_tensor.stop_gradient = True | |
P_hat_tensor.stop_gradient = True | |
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime) | |
batch_C_ex_part_tensor.stop_gradient = True | |
batch_C_prime_with_zeros = paddle.concat( | |
[batch_C_prime, batch_C_ex_part_tensor], axis=1) | |
batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros) | |
batch_P_prime = paddle.matmul(P_hat_tensor, batch_T) | |
return batch_P_prime | |
def build_C_paddle(self): | |
""" Return coordinates of fiducial points in I_r; C """ | |
F = self.F | |
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64') | |
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64') | |
ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64') | |
ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
return C # F x 2 | |
def build_P_paddle(self, I_r_size): | |
I_r_height, I_r_width = I_r_size | |
I_r_grid_x = (paddle.arange( | |
-I_r_width, I_r_width, 2, dtype='float64') + 1.0 | |
) / paddle.to_tensor(np.array([I_r_width])) | |
I_r_grid_y = (paddle.arange( | |
-I_r_height, I_r_height, 2, dtype='float64') + 1.0 | |
) / paddle.to_tensor(np.array([I_r_height])) | |
# P: self.I_r_width x self.I_r_height x 2 | |
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2) | |
P = paddle.transpose(P, perm=[1, 0, 2]) | |
# n (= self.I_r_width x self.I_r_height) x 2 | |
return P.reshape([-1, 2]) | |
def build_inv_delta_C_paddle(self, C): | |
""" Return inv_delta_C which is needed to calculate T """ | |
F = self.F | |
hat_eye = paddle.eye(F, dtype='float64') # F x F | |
hat_C = paddle.norm( | |
C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye | |
hat_C = (hat_C**2) * paddle.log(hat_C) | |
delta_C = paddle.concat( # F+3 x F+3 | |
[ | |
paddle.concat( | |
[paddle.ones( | |
(F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3 | |
paddle.concat( | |
[ | |
paddle.zeros( | |
(2, 3), dtype='float64'), paddle.transpose( | |
C, perm=[1, 0]) | |
], | |
axis=1), # 2 x F+3 | |
paddle.concat( | |
[ | |
paddle.zeros( | |
(1, 3), dtype='float64'), paddle.ones( | |
(1, F), dtype='float64') | |
], | |
axis=1) # 1 x F+3 | |
], | |
axis=0) | |
inv_delta_C = paddle.inverse(delta_C) | |
return inv_delta_C # F+3 x F+3 | |
def build_P_hat_paddle(self, C, P): | |
F = self.F | |
eps = self.eps | |
n = P.shape[0] # n (= self.I_r_width x self.I_r_height) | |
# P_tile: n x 2 -> n x 1 x 2 -> n x F x 2 | |
P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1)) | |
C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2 | |
P_diff = P_tile - C_tile # n x F x 2 | |
# rbf_norm: n x F | |
rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False) | |
# rbf: n x F | |
rbf = paddle.multiply( | |
paddle.square(rbf_norm), paddle.log(rbf_norm + eps)) | |
P_hat = paddle.concat( | |
[paddle.ones( | |
(n, 1), dtype='float64'), P, rbf], axis=1) | |
return P_hat # n x F+3 | |
def get_expand_tensor(self, batch_C_prime): | |
B, H, C = batch_C_prime.shape | |
batch_C_prime = batch_C_prime.reshape([B, H * C]) | |
batch_C_ex_part_tensor = self.fc(batch_C_prime) | |
batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2]) | |
return batch_C_ex_part_tensor | |
class TPS(nn.Layer): | |
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): | |
super(TPS, self).__init__() | |
self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr, | |
model_name) | |
self.grid_generator = GridGenerator(self.loc_net.out_channels, | |
num_fiducial) | |
self.out_channels = in_channels | |
def forward(self, image): | |
image.stop_gradient = False | |
batch_C_prime = self.loc_net(image) | |
batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:]) | |
batch_P_prime = batch_P_prime.reshape( | |
[-1, image.shape[2], image.shape[3], 2]) | |
is_fp16 = False | |
if batch_P_prime.dtype != paddle.float32: | |
data_type = batch_P_prime.dtype | |
image = image.cast(paddle.float32) | |
batch_P_prime = batch_P_prime.cast(paddle.float32) | |
is_fp16 = True | |
batch_I_r = F.grid_sample(x=image, grid=batch_P_prime) | |
if is_fp16: | |
batch_I_r = batch_I_r.cast(data_type) | |
return batch_I_r | |