Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import cv2 | |
import paddle | |
from paddle.nn import functional as F | |
from ppocr.postprocess.pse_postprocess.pse import pse | |
class PSEPostProcess(object): | |
""" | |
The post process for PSE. | |
""" | |
def __init__(self, | |
thresh=0.5, | |
box_thresh=0.85, | |
min_area=16, | |
box_type='quad', | |
scale=4, | |
**kwargs): | |
assert box_type in ['quad', 'poly'], 'Only quad and poly is supported' | |
self.thresh = thresh | |
self.box_thresh = box_thresh | |
self.min_area = min_area | |
self.box_type = box_type | |
self.scale = scale | |
def __call__(self, outs_dict, shape_list): | |
pred = outs_dict['maps'] | |
if not isinstance(pred, paddle.Tensor): | |
pred = paddle.to_tensor(pred) | |
pred = F.interpolate( | |
pred, scale_factor=4 // self.scale, mode='bilinear') | |
score = F.sigmoid(pred[:, 0, :, :]) | |
kernels = (pred > self.thresh).astype('float32') | |
text_mask = kernels[:, 0, :, :] | |
text_mask = paddle.unsqueeze(text_mask, axis=1) | |
kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask | |
score = score.numpy() | |
kernels = kernels.numpy().astype(np.uint8) | |
boxes_batch = [] | |
for batch_index in range(pred.shape[0]): | |
boxes, scores = self.boxes_from_bitmap(score[batch_index], | |
kernels[batch_index], | |
shape_list[batch_index]) | |
boxes_batch.append({'points': boxes, 'scores': scores}) | |
return boxes_batch | |
def boxes_from_bitmap(self, score, kernels, shape): | |
label = pse(kernels, self.min_area) | |
return self.generate_box(score, label, shape) | |
def generate_box(self, score, label, shape): | |
src_h, src_w, ratio_h, ratio_w = shape | |
label_num = np.max(label) + 1 | |
boxes = [] | |
scores = [] | |
for i in range(1, label_num): | |
ind = label == i | |
points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1] | |
if points.shape[0] < self.min_area: | |
label[ind] = 0 | |
continue | |
score_i = np.mean(score[ind]) | |
if score_i < self.box_thresh: | |
label[ind] = 0 | |
continue | |
if self.box_type == 'quad': | |
rect = cv2.minAreaRect(points) | |
bbox = cv2.boxPoints(rect) | |
elif self.box_type == 'poly': | |
box_height = np.max(points[:, 1]) + 10 | |
box_width = np.max(points[:, 0]) + 10 | |
mask = np.zeros((box_height, box_width), np.uint8) | |
mask[points[:, 1], points[:, 0]] = 255 | |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, | |
cv2.CHAIN_APPROX_SIMPLE) | |
bbox = np.squeeze(contours[0], 1) | |
else: | |
raise NotImplementedError | |
bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w) | |
bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h) | |
boxes.append(bbox) | |
scores.append(score_i) | |
return boxes, scores | |