Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import paddle | |
from .rec_postprocess import AttnLabelDecode | |
class TableLabelDecode(AttnLabelDecode): | |
""" """ | |
def __init__(self, | |
character_dict_path, | |
merge_no_span_structure=False, | |
**kwargs): | |
dict_character = [] | |
with open(character_dict_path, "rb") as fin: | |
lines = fin.readlines() | |
for line in lines: | |
line = line.decode('utf-8').strip("\n").strip("\r\n") | |
dict_character.append(line) | |
if merge_no_span_structure: | |
if "<td></td>" not in dict_character: | |
dict_character.append("<td></td>") | |
if "<td>" in dict_character: | |
dict_character.remove("<td>") | |
dict_character = self.add_special_char(dict_character) | |
self.dict = {} | |
for i, char in enumerate(dict_character): | |
self.dict[char] = i | |
self.character = dict_character | |
self.td_token = ['<td>', '<td', '<td></td>'] | |
def __call__(self, preds, batch=None): | |
structure_probs = preds['structure_probs'] | |
bbox_preds = preds['loc_preds'] | |
if isinstance(structure_probs, paddle.Tensor): | |
structure_probs = structure_probs.numpy() | |
if isinstance(bbox_preds, paddle.Tensor): | |
bbox_preds = bbox_preds.numpy() | |
shape_list = batch[-1] | |
result = self.decode(structure_probs, bbox_preds, shape_list) | |
if len(batch) == 1: # only contains shape | |
return result | |
label_decode_result = self.decode_label(batch) | |
return result, label_decode_result | |
def decode(self, structure_probs, bbox_preds, shape_list): | |
"""convert text-label into text-index. | |
""" | |
ignored_tokens = self.get_ignored_tokens() | |
end_idx = self.dict[self.end_str] | |
structure_idx = structure_probs.argmax(axis=2) | |
structure_probs = structure_probs.max(axis=2) | |
structure_batch_list = [] | |
bbox_batch_list = [] | |
batch_size = len(structure_idx) | |
for batch_idx in range(batch_size): | |
structure_list = [] | |
bbox_list = [] | |
score_list = [] | |
for idx in range(len(structure_idx[batch_idx])): | |
char_idx = int(structure_idx[batch_idx][idx]) | |
if idx > 0 and char_idx == end_idx: | |
break | |
if char_idx in ignored_tokens: | |
continue | |
text = self.character[char_idx] | |
if text in self.td_token: | |
bbox = bbox_preds[batch_idx, idx] | |
bbox = self._bbox_decode(bbox, shape_list[batch_idx]) | |
bbox_list.append(bbox) | |
structure_list.append(text) | |
score_list.append(structure_probs[batch_idx, idx]) | |
structure_batch_list.append([structure_list, np.mean(score_list)]) | |
bbox_batch_list.append(np.array(bbox_list)) | |
result = { | |
'bbox_batch_list': bbox_batch_list, | |
'structure_batch_list': structure_batch_list, | |
} | |
return result | |
def decode_label(self, batch): | |
"""convert text-label into text-index. | |
""" | |
structure_idx = batch[1] | |
gt_bbox_list = batch[2] | |
shape_list = batch[-1] | |
ignored_tokens = self.get_ignored_tokens() | |
end_idx = self.dict[self.end_str] | |
structure_batch_list = [] | |
bbox_batch_list = [] | |
batch_size = len(structure_idx) | |
for batch_idx in range(batch_size): | |
structure_list = [] | |
bbox_list = [] | |
for idx in range(len(structure_idx[batch_idx])): | |
char_idx = int(structure_idx[batch_idx][idx]) | |
if idx > 0 and char_idx == end_idx: | |
break | |
if char_idx in ignored_tokens: | |
continue | |
structure_list.append(self.character[char_idx]) | |
bbox = gt_bbox_list[batch_idx][idx] | |
if bbox.sum() != 0: | |
bbox = self._bbox_decode(bbox, shape_list[batch_idx]) | |
bbox_list.append(bbox) | |
structure_batch_list.append(structure_list) | |
bbox_batch_list.append(bbox_list) | |
result = { | |
'bbox_batch_list': bbox_batch_list, | |
'structure_batch_list': structure_batch_list, | |
} | |
return result | |
def _bbox_decode(self, bbox, shape): | |
h, w, ratio_h, ratio_w, pad_h, pad_w = shape | |
bbox[0::2] *= w | |
bbox[1::2] *= h | |
return bbox | |
class TableMasterLabelDecode(TableLabelDecode): | |
""" """ | |
def __init__(self, | |
character_dict_path, | |
box_shape='ori', | |
merge_no_span_structure=True, | |
**kwargs): | |
super(TableMasterLabelDecode, self).__init__(character_dict_path, | |
merge_no_span_structure) | |
self.box_shape = box_shape | |
assert box_shape in [ | |
'ori', 'pad' | |
], 'The shape used for box normalization must be ori or pad' | |
def add_special_char(self, dict_character): | |
self.beg_str = '<SOS>' | |
self.end_str = '<EOS>' | |
self.unknown_str = '<UKN>' | |
self.pad_str = '<PAD>' | |
dict_character = dict_character | |
dict_character = dict_character + [ | |
self.unknown_str, self.beg_str, self.end_str, self.pad_str | |
] | |
return dict_character | |
def get_ignored_tokens(self): | |
pad_idx = self.dict[self.pad_str] | |
start_idx = self.dict[self.beg_str] | |
end_idx = self.dict[self.end_str] | |
unknown_idx = self.dict[self.unknown_str] | |
return [start_idx, end_idx, pad_idx, unknown_idx] | |
def _bbox_decode(self, bbox, shape): | |
h, w, ratio_h, ratio_w, pad_h, pad_w = shape | |
if self.box_shape == 'pad': | |
h, w = pad_h, pad_w | |
bbox[0::2] *= w | |
bbox[1::2] *= h | |
bbox[0::2] /= ratio_w | |
bbox[1::2] /= ratio_h | |
x, y, w, h = bbox | |
x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2 | |
bbox = np.array([x1, y1, x2, y2]) | |
return bbox | |