Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.insert(0, __dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
import paddle | |
from ppocr.data import build_dataloader, set_signal_handlers | |
from ppocr.modeling.architectures import build_model | |
from ppocr.postprocess import build_post_process | |
from ppocr.metrics import build_metric | |
from ppocr.utils.save_load import load_model | |
import tools.program as program | |
def main(): | |
global_config = config['Global'] | |
# build dataloader | |
set_signal_handlers() | |
valid_dataloader = build_dataloader(config, 'Eval', device, logger) | |
# build post process | |
post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
# build model | |
# for rec algorithm | |
if hasattr(post_process_class, 'character'): | |
char_num = len(getattr(post_process_class, 'character')) | |
if config['Architecture']["algorithm"] in ["Distillation", | |
]: # distillation model | |
for key in config['Architecture']["Models"]: | |
if config['Architecture']['Models'][key]['Head'][ | |
'name'] == 'MultiHead': # for multi head | |
out_channels_list = {} | |
if config['PostProcess'][ | |
'name'] == 'DistillationSARLabelDecode': | |
char_num = char_num - 2 | |
if config['PostProcess'][ | |
'name'] == 'DistillationNRTRLabelDecode': | |
char_num = char_num - 3 | |
out_channels_list['CTCLabelDecode'] = char_num | |
out_channels_list['SARLabelDecode'] = char_num + 2 | |
out_channels_list['NRTRLabelDecode'] = char_num + 3 | |
config['Architecture']['Models'][key]['Head'][ | |
'out_channels_list'] = out_channels_list | |
else: | |
config['Architecture']["Models"][key]["Head"][ | |
'out_channels'] = char_num | |
elif config['Architecture']['Head'][ | |
'name'] == 'MultiHead': # for multi head | |
out_channels_list = {} | |
if config['PostProcess']['name'] == 'SARLabelDecode': | |
char_num = char_num - 2 | |
if config['PostProcess']['name'] == 'NRTRLabelDecode': | |
char_num = char_num - 3 | |
out_channels_list['CTCLabelDecode'] = char_num | |
out_channels_list['SARLabelDecode'] = char_num + 2 | |
out_channels_list['NRTRLabelDecode'] = char_num + 3 | |
config['Architecture']['Head'][ | |
'out_channels_list'] = out_channels_list | |
else: # base rec model | |
config['Architecture']["Head"]['out_channels'] = char_num | |
model = build_model(config['Architecture']) | |
extra_input_models = [ | |
"SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "VisionLAN", | |
"RobustScanner", "SVTR_HGNet" | |
] | |
extra_input = False | |
if config['Architecture']['algorithm'] == 'Distillation': | |
for key in config['Architecture']["Models"]: | |
extra_input = extra_input or config['Architecture']['Models'][key][ | |
'algorithm'] in extra_input_models | |
else: | |
extra_input = config['Architecture']['algorithm'] in extra_input_models | |
if "model_type" in config['Architecture'].keys(): | |
if config['Architecture']['algorithm'] == 'CAN': | |
model_type = 'can' | |
else: | |
model_type = config['Architecture']['model_type'] | |
else: | |
model_type = None | |
# build metric | |
eval_class = build_metric(config['Metric']) | |
# amp | |
use_amp = config["Global"].get("use_amp", False) | |
amp_level = config["Global"].get("amp_level", 'O2') | |
amp_custom_black_list = config['Global'].get('amp_custom_black_list', []) | |
if use_amp: | |
AMP_RELATED_FLAGS_SETTING = { | |
'FLAGS_cudnn_batchnorm_spatial_persistent': 1, | |
'FLAGS_max_inplace_grad_add': 8, | |
} | |
paddle.set_flags(AMP_RELATED_FLAGS_SETTING) | |
scale_loss = config["Global"].get("scale_loss", 1.0) | |
use_dynamic_loss_scaling = config["Global"].get( | |
"use_dynamic_loss_scaling", False) | |
scaler = paddle.amp.GradScaler( | |
init_loss_scaling=scale_loss, | |
use_dynamic_loss_scaling=use_dynamic_loss_scaling) | |
if amp_level == "O2": | |
model = paddle.amp.decorate( | |
models=model, level=amp_level, master_weight=True) | |
else: | |
scaler = None | |
best_model_dict = load_model( | |
config, model, model_type=config['Architecture']["model_type"]) | |
if len(best_model_dict): | |
logger.info('metric in ckpt ***************') | |
for k, v in best_model_dict.items(): | |
logger.info('{}:{}'.format(k, v)) | |
# start eval | |
metric = program.eval(model, valid_dataloader, post_process_class, | |
eval_class, model_type, extra_input, scaler, | |
amp_level, amp_custom_black_list) | |
logger.info('metric eval ***************') | |
for k, v in metric.items(): | |
logger.info('{}:{}'.format(k, v)) | |
if __name__ == '__main__': | |
config, device, logger, vdl_writer = program.preprocess() | |
main() | |