Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import sys | |
import pickle | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) | |
from ppocr.data import build_dataloader, set_signal_handlers | |
from ppocr.modeling.architectures import build_model | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.save_load import load_model | |
from ppocr.utils.utility import print_dict | |
import tools.program as program | |
def main(): | |
global_config = config['Global'] | |
# build dataloader | |
config['Eval']['dataset']['name'] = config['Train']['dataset']['name'] | |
config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][ | |
'data_dir'] | |
config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][ | |
'label_file_list'] | |
set_signal_handlers() | |
eval_dataloader = build_dataloader(config, 'Eval', device, logger) | |
# build post process | |
post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
# build model | |
# for rec algorithm | |
if hasattr(post_process_class, 'character'): | |
char_num = len(getattr(post_process_class, 'character')) | |
config['Architecture']["Head"]['out_channels'] = char_num | |
#set return_features = True | |
config['Architecture']["Head"]["return_feats"] = True | |
model = build_model(config['Architecture']) | |
best_model_dict = load_model(config, model) | |
if len(best_model_dict): | |
logger.info('metric in ckpt ***************') | |
for k, v in best_model_dict.items(): | |
logger.info('{}:{}'.format(k, v)) | |
# get features from train data | |
char_center = program.get_center(model, eval_dataloader, post_process_class) | |
#serialize to disk | |
with open("train_center.pkl", 'wb') as f: | |
pickle.dump(char_center, f) | |
return | |
if __name__ == '__main__': | |
config, device, logger, vdl_writer = program.preprocess() | |
main() | |