Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import copy | |
import numpy as np | |
import math | |
import time | |
import traceback | |
import tools.infer.utility as utility | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
logger = get_logger() | |
class TextClassifier(object): | |
def __init__(self, args): | |
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")] | |
self.cls_batch_num = args.cls_batch_num | |
self.cls_thresh = args.cls_thresh | |
postprocess_params = { | |
'name': 'ClsPostProcess', | |
"label_list": args.label_list, | |
} | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor, self.output_tensors, _ = \ | |
utility.create_predictor(args, 'cls', logger) | |
self.use_onnx = args.use_onnx | |
def resize_norm_img(self, img): | |
imgC, imgH, imgW = self.cls_image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype('float32') | |
if self.cls_image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
return padding_im | |
def __call__(self, img_list): | |
img_list = copy.deepcopy(img_list) | |
img_num = len(img_list) | |
# Calculate the aspect ratio of all text bars | |
width_list = [] | |
for img in img_list: | |
width_list.append(img.shape[1] / float(img.shape[0])) | |
# Sorting can speed up the cls process | |
indices = np.argsort(np.array(width_list)) | |
cls_res = [['', 0.0]] * img_num | |
batch_num = self.cls_batch_num | |
elapse = 0 | |
for beg_img_no in range(0, img_num, batch_num): | |
end_img_no = min(img_num, beg_img_no + batch_num) | |
norm_img_batch = [] | |
max_wh_ratio = 0 | |
starttime = time.time() | |
for ino in range(beg_img_no, end_img_no): | |
h, w = img_list[indices[ino]].shape[0:2] | |
wh_ratio = w * 1.0 / h | |
max_wh_ratio = max(max_wh_ratio, wh_ratio) | |
for ino in range(beg_img_no, end_img_no): | |
norm_img = self.resize_norm_img(img_list[indices[ino]]) | |
norm_img = norm_img[np.newaxis, :] | |
norm_img_batch.append(norm_img) | |
norm_img_batch = np.concatenate(norm_img_batch) | |
norm_img_batch = norm_img_batch.copy() | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = norm_img_batch | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
prob_out = outputs[0] | |
else: | |
self.input_tensor.copy_from_cpu(norm_img_batch) | |
self.predictor.run() | |
prob_out = self.output_tensors[0].copy_to_cpu() | |
self.predictor.try_shrink_memory() | |
cls_result = self.postprocess_op(prob_out) | |
elapse += time.time() - starttime | |
for rno in range(len(cls_result)): | |
label, score = cls_result[rno] | |
cls_res[indices[beg_img_no + rno]] = [label, score] | |
if '180' in label and score > self.cls_thresh: | |
img_list[indices[beg_img_no + rno]] = cv2.rotate( | |
img_list[indices[beg_img_no + rno]], 1) | |
return img_list, cls_res, elapse | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
text_classifier = TextClassifier(args) | |
valid_image_file_list = [] | |
img_list = [] | |
for image_file in image_file_list: | |
img, flag, _ = check_and_read(image_file) | |
if not flag: | |
img = cv2.imread(image_file) | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
valid_image_file_list.append(image_file) | |
img_list.append(img) | |
try: | |
img_list, cls_res, predict_time = text_classifier(img_list) | |
except Exception as E: | |
logger.info(traceback.format_exc()) | |
logger.info(E) | |
exit() | |
for ino in range(len(img_list)): | |
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], | |
cls_res[ino])) | |
if __name__ == "__main__": | |
main(utility.parse_args()) | |