Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import numpy as np | |
import time | |
import sys | |
import tools.infer.utility as utility | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppocr.data import create_operators, transform | |
from ppocr.postprocess import build_post_process | |
logger = get_logger() | |
class TextE2E(object): | |
def __init__(self, args): | |
self.args = args | |
self.e2e_algorithm = args.e2e_algorithm | |
self.use_onnx = args.use_onnx | |
pre_process_list = [{ | |
'E2EResizeForTest': {} | |
}, { | |
'NormalizeImage': { | |
'std': [0.229, 0.224, 0.225], | |
'mean': [0.485, 0.456, 0.406], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
}, { | |
'ToCHWImage': None | |
}, { | |
'KeepKeys': { | |
'keep_keys': ['image', 'shape'] | |
} | |
}] | |
postprocess_params = {} | |
if self.e2e_algorithm == "PGNet": | |
pre_process_list[0] = { | |
'E2EResizeForTest': { | |
'max_side_len': args.e2e_limit_side_len, | |
'valid_set': 'totaltext' | |
} | |
} | |
postprocess_params['name'] = 'PGPostProcess' | |
postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh | |
postprocess_params["character_dict_path"] = args.e2e_char_dict_path | |
postprocess_params["valid_set"] = args.e2e_pgnet_valid_set | |
postprocess_params["mode"] = args.e2e_pgnet_mode | |
else: | |
logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm)) | |
sys.exit(0) | |
self.preprocess_op = create_operators(pre_process_list) | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor( | |
args, 'e2e', logger) # paddle.jit.load(args.det_model_dir) | |
# self.predictor.eval() | |
def clip_det_res(self, points, img_height, img_width): | |
for pno in range(points.shape[0]): | |
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | |
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | |
return points | |
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
box = self.clip_det_res(box, img_height, img_width) | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def __call__(self, img): | |
ori_im = img.copy() | |
data = {'image': img} | |
data = transform(data, self.preprocess_op) | |
img, shape_list = data | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
shape_list = np.expand_dims(shape_list, axis=0) | |
img = img.copy() | |
starttime = time.time() | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = img | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
preds = {} | |
preds['f_border'] = outputs[0] | |
preds['f_char'] = outputs[1] | |
preds['f_direction'] = outputs[2] | |
preds['f_score'] = outputs[3] | |
else: | |
self.input_tensor.copy_from_cpu(img) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
preds = {} | |
if self.e2e_algorithm == 'PGNet': | |
preds['f_border'] = outputs[0] | |
preds['f_char'] = outputs[1] | |
preds['f_direction'] = outputs[2] | |
preds['f_score'] = outputs[3] | |
else: | |
raise NotImplementedError | |
post_result = self.postprocess_op(preds, shape_list) | |
points, strs = post_result['points'], post_result['texts'] | |
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape) | |
elapse = time.time() - starttime | |
return dt_boxes, strs, elapse | |
if __name__ == "__main__": | |
args = utility.parse_args() | |
image_file_list = get_image_file_list(args.image_dir) | |
text_detector = TextE2E(args) | |
count = 0 | |
total_time = 0 | |
draw_img_save = "./inference_results" | |
if not os.path.exists(draw_img_save): | |
os.makedirs(draw_img_save) | |
for image_file in image_file_list: | |
img, flag, _ = check_and_read(image_file) | |
if not flag: | |
img = cv2.imread(image_file) | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
points, strs, elapse = text_detector(img) | |
if count > 0: | |
total_time += elapse | |
count += 1 | |
logger.info("Predict time of {}: {}".format(image_file, elapse)) | |
src_im = utility.draw_e2e_res(points, strs, image_file) | |
img_name_pure = os.path.split(image_file)[-1] | |
img_path = os.path.join(draw_img_save, | |
"e2e_res_{}".format(img_name_pure)) | |
cv2.imwrite(img_path, src_im) | |
logger.info("The visualized image saved in {}".format(img_path)) | |
if count > 1: | |
logger.info("Avg Time: {}".format(total_time / (count - 1))) | |