Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
from PIL import Image | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.insert(0, __dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import numpy as np | |
import math | |
import time | |
import traceback | |
import paddle | |
import tools.infer.utility as utility | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
logger = get_logger() | |
class TextSR(object): | |
def __init__(self, args): | |
self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")] | |
self.sr_batch_num = args.sr_batch_num | |
self.predictor, self.input_tensor, self.output_tensors, self.config = \ | |
utility.create_predictor(args, 'sr', logger) | |
self.benchmark = args.benchmark | |
if args.benchmark: | |
import auto_log | |
pid = os.getpid() | |
gpu_id = utility.get_infer_gpuid() | |
self.autolog = auto_log.AutoLogger( | |
model_name="sr", | |
model_precision=args.precision, | |
batch_size=args.sr_batch_num, | |
data_shape="dynamic", | |
save_path=None, #args.save_log_path, | |
inference_config=self.config, | |
pids=pid, | |
process_name=None, | |
gpu_ids=gpu_id if args.use_gpu else None, | |
time_keys=[ | |
'preprocess_time', 'inference_time', 'postprocess_time' | |
], | |
warmup=0, | |
logger=logger) | |
def resize_norm_img(self, img): | |
imgC, imgH, imgW = self.sr_image_shape | |
img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC) | |
img_numpy = np.array(img).astype("float32") | |
img_numpy = img_numpy.transpose((2, 0, 1)) / 255 | |
return img_numpy | |
def __call__(self, img_list): | |
img_num = len(img_list) | |
batch_num = self.sr_batch_num | |
st = time.time() | |
st = time.time() | |
all_result = [] * img_num | |
if self.benchmark: | |
self.autolog.times.start() | |
for beg_img_no in range(0, img_num, batch_num): | |
end_img_no = min(img_num, beg_img_no + batch_num) | |
norm_img_batch = [] | |
imgC, imgH, imgW = self.sr_image_shape | |
for ino in range(beg_img_no, end_img_no): | |
norm_img = self.resize_norm_img(img_list[ino]) | |
norm_img = norm_img[np.newaxis, :] | |
norm_img_batch.append(norm_img) | |
norm_img_batch = np.concatenate(norm_img_batch) | |
norm_img_batch = norm_img_batch.copy() | |
if self.benchmark: | |
self.autolog.times.stamp() | |
self.input_tensor.copy_from_cpu(norm_img_batch) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
if len(outputs) != 1: | |
preds = outputs | |
else: | |
preds = outputs[0] | |
all_result.append(outputs) | |
if self.benchmark: | |
self.autolog.times.end(stamp=True) | |
return all_result, time.time() - st | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
text_recognizer = TextSR(args) | |
valid_image_file_list = [] | |
img_list = [] | |
# warmup 2 times | |
if args.warmup: | |
img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8) | |
for i in range(2): | |
res = text_recognizer([img] * int(args.sr_batch_num)) | |
for image_file in image_file_list: | |
img, flag, _ = check_and_read(image_file) | |
if not flag: | |
img = Image.open(image_file).convert("RGB") | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
valid_image_file_list.append(image_file) | |
img_list.append(img) | |
try: | |
preds, _ = text_recognizer(img_list) | |
for beg_no in range(len(preds)): | |
sr_img = preds[beg_no][1] | |
lr_img = preds[beg_no][0] | |
for i in (range(sr_img.shape[0])): | |
fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) | |
fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) | |
img_name_pure = os.path.split(valid_image_file_list[ | |
beg_no * args.sr_batch_num + i])[-1] | |
cv2.imwrite("infer_result/sr_{}".format(img_name_pure), | |
fm_sr[:, :, ::-1]) | |
logger.info("The visualized image saved in infer_result/sr_{}". | |
format(img_name_pure)) | |
except Exception as E: | |
logger.info(traceback.format_exc()) | |
logger.info(E) | |
exit() | |
if args.benchmark: | |
text_recognizer.autolog.report() | |
if __name__ == "__main__": | |
main(utility.parse_args()) | |