Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import subprocess | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import copy | |
import numpy as np | |
import json | |
import time | |
import logging | |
from PIL import Image | |
import tools.infer.utility as utility | |
import tools.infer.predict_rec as predict_rec | |
import tools.infer.predict_det as predict_det | |
import tools.infer.predict_cls as predict_cls | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppocr.utils.logging import get_logger | |
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop | |
logger = get_logger() | |
class TextSystem(object): | |
def __init__(self, args): | |
if not args.show_log: | |
logger.setLevel(logging.INFO) | |
self.text_detector = predict_det.TextDetector(args) | |
self.text_recognizer = predict_rec.TextRecognizer(args) | |
self.use_angle_cls = args.use_angle_cls | |
self.drop_score = args.drop_score | |
if self.use_angle_cls: | |
self.text_classifier = predict_cls.TextClassifier(args) | |
self.args = args | |
self.crop_image_res_index = 0 | |
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res): | |
os.makedirs(output_dir, exist_ok=True) | |
bbox_num = len(img_crop_list) | |
for bno in range(bbox_num): | |
cv2.imwrite( | |
os.path.join(output_dir, | |
f"mg_crop_{bno+self.crop_image_res_index}.jpg"), | |
img_crop_list[bno]) | |
logger.debug(f"{bno}, {rec_res[bno]}") | |
self.crop_image_res_index += bbox_num | |
def __call__(self, img, cls=True): | |
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} | |
if img is None: | |
logger.debug("no valid image provided") | |
return None, None, time_dict | |
start = time.time() | |
ori_im = img.copy() | |
dt_boxes, elapse = self.text_detector(img) | |
time_dict['det'] = elapse | |
if dt_boxes is None: | |
logger.debug("no dt_boxes found, elapsed : {}".format(elapse)) | |
end = time.time() | |
time_dict['all'] = end - start | |
return None, None, time_dict | |
else: | |
logger.debug("dt_boxes num : {}, elapsed : {}".format( | |
len(dt_boxes), elapse)) | |
img_crop_list = [] | |
dt_boxes = sorted_boxes(dt_boxes) | |
for bno in range(len(dt_boxes)): | |
tmp_box = copy.deepcopy(dt_boxes[bno]) | |
if self.args.det_box_type == "quad": | |
img_crop = get_rotate_crop_image(ori_im, tmp_box) | |
else: | |
img_crop = get_minarea_rect_crop(ori_im, tmp_box) | |
img_crop_list.append(img_crop) | |
if self.use_angle_cls and cls: | |
img_crop_list, angle_list, elapse = self.text_classifier( | |
img_crop_list) | |
time_dict['cls'] = elapse | |
logger.debug("cls num : {}, elapsed : {}".format( | |
len(img_crop_list), elapse)) | |
rec_res, elapse = self.text_recognizer(img_crop_list) | |
time_dict['rec'] = elapse | |
logger.debug("rec_res num : {}, elapsed : {}".format( | |
len(rec_res), elapse)) | |
if self.args.save_crop_res: | |
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list, | |
rec_res) | |
filter_boxes, filter_rec_res = [], [] | |
for box, rec_result in zip(dt_boxes, rec_res): | |
text, score = rec_result | |
if score >= self.drop_score: | |
filter_boxes.append(box) | |
filter_rec_res.append(rec_result) | |
end = time.time() | |
time_dict['all'] = end - start | |
return filter_boxes, filter_rec_res, time_dict | |
def sorted_boxes(dt_boxes): | |
""" | |
Sort text boxes in order from top to bottom, left to right | |
args: | |
dt_boxes(array):detected text boxes with shape [4, 2] | |
return: | |
sorted boxes(array) with shape [4, 2] | |
""" | |
num_boxes = dt_boxes.shape[0] | |
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) | |
_boxes = list(sorted_boxes) | |
for i in range(num_boxes - 1): | |
for j in range(i, -1, -1): | |
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ | |
(_boxes[j + 1][0][0] < _boxes[j][0][0]): | |
tmp = _boxes[j] | |
_boxes[j] = _boxes[j + 1] | |
_boxes[j + 1] = tmp | |
else: | |
break | |
return _boxes | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
image_file_list = image_file_list[args.process_id::args.total_process_num] | |
text_sys = TextSystem(args) | |
is_visualize = True | |
font_path = args.vis_font_path | |
drop_score = args.drop_score | |
draw_img_save_dir = args.draw_img_save_dir | |
os.makedirs(draw_img_save_dir, exist_ok=True) | |
save_results = [] | |
logger.info( | |
"In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', " | |
"if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320" | |
) | |
# warm up 10 times | |
if args.warmup: | |
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) | |
for i in range(10): | |
res = text_sys(img) | |
total_time = 0 | |
cpu_mem, gpu_mem, gpu_util = 0, 0, 0 | |
_st = time.time() | |
count = 0 | |
for idx, image_file in enumerate(image_file_list): | |
img, flag_gif, flag_pdf = check_and_read(image_file) | |
if not flag_gif and not flag_pdf: | |
img = cv2.imread(image_file) | |
if not flag_pdf: | |
if img is None: | |
logger.debug("error in loading image:{}".format(image_file)) | |
continue | |
imgs = [img] | |
else: | |
page_num = args.page_num | |
if page_num > len(img) or page_num == 0: | |
page_num = len(img) | |
imgs = img[:page_num] | |
for index, img in enumerate(imgs): | |
starttime = time.time() | |
dt_boxes, rec_res, time_dict = text_sys(img) | |
elapse = time.time() - starttime | |
total_time += elapse | |
if len(imgs) > 1: | |
logger.debug( | |
str(idx) + '_' + str(index) + " Predict time of %s: %.3fs" | |
% (image_file, elapse)) | |
else: | |
logger.debug( | |
str(idx) + " Predict time of %s: %.3fs" % (image_file, | |
elapse)) | |
for text, score in rec_res: | |
logger.debug("{}, {:.3f}".format(text, score)) | |
res = [{ | |
"transcription": rec_res[i][0], | |
"points": np.array(dt_boxes[i]).astype(np.int32).tolist(), | |
} for i in range(len(dt_boxes))] | |
if len(imgs) > 1: | |
save_pred = os.path.basename(image_file) + '_' + str( | |
index) + "\t" + json.dumps( | |
res, ensure_ascii=False) + "\n" | |
else: | |
save_pred = os.path.basename(image_file) + "\t" + json.dumps( | |
res, ensure_ascii=False) + "\n" | |
save_results.append(save_pred) | |
if is_visualize: | |
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
boxes = dt_boxes | |
txts = [rec_res[i][0] for i in range(len(rec_res))] | |
scores = [rec_res[i][1] for i in range(len(rec_res))] | |
draw_img = draw_ocr_box_txt( | |
image, | |
boxes, | |
txts, | |
scores, | |
drop_score=drop_score, | |
font_path=font_path) | |
if flag_gif: | |
save_file = image_file[:-3] + "png" | |
elif flag_pdf: | |
save_file = image_file.replace('.pdf', | |
'_' + str(index) + '.png') | |
else: | |
save_file = image_file | |
cv2.imwrite( | |
os.path.join(draw_img_save_dir, | |
os.path.basename(save_file)), | |
draw_img[:, :, ::-1]) | |
logger.debug("The visualized image saved in {}".format( | |
os.path.join(draw_img_save_dir, os.path.basename( | |
save_file)))) | |
logger.info("The predict total time is {}".format(time.time() - _st)) | |
if args.benchmark: | |
text_sys.text_detector.autolog.report() | |
text_sys.text_recognizer.autolog.report() | |
with open( | |
os.path.join(draw_img_save_dir, "system_results.txt"), | |
'w', | |
encoding='utf-8') as f: | |
f.writelines(save_results) | |
if __name__ == "__main__": | |
args = utility.parse_args() | |
if args.use_mp: | |
p_list = [] | |
total_process_num = args.total_process_num | |
for process_id in range(total_process_num): | |
cmd = [sys.executable, "-u"] + sys.argv + [ | |
"--process_id={}".format(process_id), | |
"--use_mp={}".format(False) | |
] | |
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) | |
p_list.append(p) | |
for p in p_list: | |
p.wait() | |
else: | |
main(args) | |