Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import os | |
import sys | |
import platform | |
import cv2 | |
import numpy as np | |
import paddle | |
from PIL import Image, ImageDraw, ImageFont | |
import math | |
from paddle import inference | |
import time | |
import random | |
from ppocr.utils.logging import get_logger | |
def str2bool(v): | |
return v.lower() in ("true", "yes", "t", "y", "1") | |
def str2int_tuple(v): | |
return tuple([int(i.strip()) for i in v.split(",")]) | |
def init_args(): | |
parser = argparse.ArgumentParser() | |
# params for prediction engine | |
parser.add_argument("--use_gpu", type=str2bool, default=True) | |
parser.add_argument("--use_xpu", type=str2bool, default=False) | |
parser.add_argument("--use_npu", type=str2bool, default=False) | |
parser.add_argument("--ir_optim", type=str2bool, default=True) | |
parser.add_argument("--use_tensorrt", type=str2bool, default=False) | |
parser.add_argument("--min_subgraph_size", type=int, default=15) | |
parser.add_argument("--precision", type=str, default="fp32") | |
parser.add_argument("--gpu_mem", type=int, default=500) | |
parser.add_argument("--gpu_id", type=int, default=0) | |
# params for text detector | |
parser.add_argument("--image_dir", type=str) | |
parser.add_argument("--page_num", type=int, default=0) | |
parser.add_argument("--det_algorithm", type=str, default='DB') | |
parser.add_argument("--det_model_dir", type=str) | |
parser.add_argument("--det_limit_side_len", type=float, default=960) | |
parser.add_argument("--det_limit_type", type=str, default='max') | |
parser.add_argument("--det_box_type", type=str, default='quad') | |
# DB parmas | |
parser.add_argument("--det_db_thresh", type=float, default=0.3) | |
parser.add_argument("--det_db_box_thresh", type=float, default=0.6) | |
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5) | |
parser.add_argument("--max_batch_size", type=int, default=10) | |
parser.add_argument("--use_dilation", type=str2bool, default=False) | |
parser.add_argument("--det_db_score_mode", type=str, default="fast") | |
# EAST parmas | |
parser.add_argument("--det_east_score_thresh", type=float, default=0.8) | |
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) | |
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) | |
# SAST parmas | |
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) | |
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) | |
# PSE parmas | |
parser.add_argument("--det_pse_thresh", type=float, default=0) | |
parser.add_argument("--det_pse_box_thresh", type=float, default=0.85) | |
parser.add_argument("--det_pse_min_area", type=float, default=16) | |
parser.add_argument("--det_pse_scale", type=int, default=1) | |
# FCE parmas | |
parser.add_argument("--scales", type=list, default=[8, 16, 32]) | |
parser.add_argument("--alpha", type=float, default=1.0) | |
parser.add_argument("--beta", type=float, default=1.0) | |
parser.add_argument("--fourier_degree", type=int, default=5) | |
# params for text recognizer | |
parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet') | |
parser.add_argument("--rec_model_dir", type=str) | |
parser.add_argument("--rec_image_inverse", type=str2bool, default=True) | |
parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320") | |
parser.add_argument("--rec_batch_num", type=int, default=6) | |
parser.add_argument("--max_text_length", type=int, default=25) | |
parser.add_argument( | |
"--rec_char_dict_path", | |
type=str, | |
default="./ppocr/utils/ppocr_keys_v1.txt") | |
parser.add_argument("--use_space_char", type=str2bool, default=True) | |
parser.add_argument( | |
"--vis_font_path", type=str, default="./doc/fonts/simfang.ttf") | |
parser.add_argument("--drop_score", type=float, default=0.5) | |
# params for e2e | |
parser.add_argument("--e2e_algorithm", type=str, default='PGNet') | |
parser.add_argument("--e2e_model_dir", type=str) | |
parser.add_argument("--e2e_limit_side_len", type=float, default=768) | |
parser.add_argument("--e2e_limit_type", type=str, default='max') | |
# PGNet parmas | |
parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5) | |
parser.add_argument( | |
"--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt") | |
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext') | |
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast') | |
# params for text classifier | |
parser.add_argument("--use_angle_cls", type=str2bool, default=False) | |
parser.add_argument("--cls_model_dir", type=str) | |
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") | |
parser.add_argument("--label_list", type=list, default=['0', '180']) | |
parser.add_argument("--cls_batch_num", type=int, default=6) | |
parser.add_argument("--cls_thresh", type=float, default=0.9) | |
parser.add_argument("--enable_mkldnn", type=str2bool, default=False) | |
parser.add_argument("--cpu_threads", type=int, default=10) | |
parser.add_argument("--use_pdserving", type=str2bool, default=False) | |
parser.add_argument("--warmup", type=str2bool, default=False) | |
# SR parmas | |
parser.add_argument("--sr_model_dir", type=str) | |
parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128") | |
parser.add_argument("--sr_batch_num", type=int, default=1) | |
# | |
parser.add_argument( | |
"--draw_img_save_dir", type=str, default="./inference_results") | |
parser.add_argument("--save_crop_res", type=str2bool, default=False) | |
parser.add_argument("--crop_res_save_dir", type=str, default="./output") | |
# multi-process | |
parser.add_argument("--use_mp", type=str2bool, default=False) | |
parser.add_argument("--total_process_num", type=int, default=1) | |
parser.add_argument("--process_id", type=int, default=0) | |
parser.add_argument("--benchmark", type=str2bool, default=False) | |
parser.add_argument("--save_log_path", type=str, default="./log_output/") | |
parser.add_argument("--show_log", type=str2bool, default=True) | |
parser.add_argument("--use_onnx", type=str2bool, default=False) | |
return parser | |
def parse_args(): | |
parser = init_args() | |
return parser.parse_args() | |
def create_predictor(args, mode, logger): | |
if mode == "det": | |
model_dir = args.det_model_dir | |
elif mode == 'cls': | |
model_dir = args.cls_model_dir | |
elif mode == 'rec': | |
model_dir = args.rec_model_dir | |
elif mode == 'table': | |
model_dir = args.table_model_dir | |
elif mode == 'ser': | |
model_dir = args.ser_model_dir | |
elif mode == 're': | |
model_dir = args.re_model_dir | |
elif mode == "sr": | |
model_dir = args.sr_model_dir | |
elif mode == 'layout': | |
model_dir = args.layout_model_dir | |
else: | |
model_dir = args.e2e_model_dir | |
if model_dir is None: | |
logger.info("not find {} model file path {}".format(mode, model_dir)) | |
sys.exit(0) | |
if args.use_onnx: | |
import onnxruntime as ort | |
model_file_path = model_dir | |
if not os.path.exists(model_file_path): | |
raise ValueError("not find model file path {}".format( | |
model_file_path)) | |
sess = ort.InferenceSession(model_file_path) | |
return sess, sess.get_inputs()[0], None, None | |
else: | |
file_names = ['model', 'inference'] | |
for file_name in file_names: | |
model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name) | |
params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name) | |
if os.path.exists(model_file_path) and os.path.exists( | |
params_file_path): | |
break | |
if not os.path.exists(model_file_path): | |
raise ValueError( | |
"not find model.pdmodel or inference.pdmodel in {}".format( | |
model_dir)) | |
if not os.path.exists(params_file_path): | |
raise ValueError( | |
"not find model.pdiparams or inference.pdiparams in {}".format( | |
model_dir)) | |
config = inference.Config(model_file_path, params_file_path) | |
if hasattr(args, 'precision'): | |
if args.precision == "fp16" and args.use_tensorrt: | |
precision = inference.PrecisionType.Half | |
elif args.precision == "int8": | |
precision = inference.PrecisionType.Int8 | |
else: | |
precision = inference.PrecisionType.Float32 | |
else: | |
precision = inference.PrecisionType.Float32 | |
if args.use_gpu: | |
gpu_id = get_infer_gpuid() | |
if gpu_id is None: | |
logger.warning( | |
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson." | |
) | |
config.enable_use_gpu(args.gpu_mem, args.gpu_id) | |
if args.use_tensorrt: | |
config.enable_tensorrt_engine( | |
workspace_size=1 << 30, | |
precision_mode=precision, | |
max_batch_size=args.max_batch_size, | |
min_subgraph_size=args. | |
min_subgraph_size, # skip the minmum trt subgraph | |
use_calib_mode=False) | |
# collect shape | |
trt_shape_f = os.path.join(model_dir, | |
f"{mode}_trt_dynamic_shape.txt") | |
if not os.path.exists(trt_shape_f): | |
config.collect_shape_range_info(trt_shape_f) | |
logger.info( | |
f"collect dynamic shape info into : {trt_shape_f}") | |
try: | |
config.enable_tuned_tensorrt_dynamic_shape(trt_shape_f, | |
True) | |
except Exception as E: | |
logger.info(E) | |
logger.info("Please keep your paddlepaddle-gpu >= 2.3.0!") | |
elif args.use_npu: | |
config.enable_custom_device("npu") | |
elif args.use_xpu: | |
config.enable_xpu(10 * 1024 * 1024) | |
else: | |
config.disable_gpu() | |
if args.enable_mkldnn: | |
# cache 10 different shapes for mkldnn to avoid memory leak | |
config.set_mkldnn_cache_capacity(10) | |
config.enable_mkldnn() | |
if args.precision == "fp16": | |
config.enable_mkldnn_bfloat16() | |
if hasattr(args, "cpu_threads"): | |
config.set_cpu_math_library_num_threads(args.cpu_threads) | |
else: | |
# default cpu threads as 10 | |
config.set_cpu_math_library_num_threads(10) | |
# enable memory optim | |
config.enable_memory_optim() | |
config.disable_glog_info() | |
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") | |
config.delete_pass("matmul_transpose_reshape_fuse_pass") | |
if mode == 're': | |
config.delete_pass("simplify_with_basic_ops_pass") | |
if mode == 'table': | |
config.delete_pass("fc_fuse_pass") # not supported for table | |
config.switch_use_feed_fetch_ops(False) | |
config.switch_ir_optim(True) | |
# create predictor | |
predictor = inference.create_predictor(config) | |
input_names = predictor.get_input_names() | |
if mode in ['ser', 're']: | |
input_tensor = [] | |
for name in input_names: | |
input_tensor.append(predictor.get_input_handle(name)) | |
else: | |
for name in input_names: | |
input_tensor = predictor.get_input_handle(name) | |
output_tensors = get_output_tensors(args, mode, predictor) | |
return predictor, input_tensor, output_tensors, config | |
def get_output_tensors(args, mode, predictor): | |
output_names = predictor.get_output_names() | |
output_tensors = [] | |
if mode == "rec" and args.rec_algorithm in [ | |
"CRNN", "SVTR_LCNet", "SVTR_HGNet" | |
]: | |
output_name = 'softmax_0.tmp_0' | |
if output_name in output_names: | |
return [predictor.get_output_handle(output_name)] | |
else: | |
for output_name in output_names: | |
output_tensor = predictor.get_output_handle(output_name) | |
output_tensors.append(output_tensor) | |
else: | |
for output_name in output_names: | |
output_tensor = predictor.get_output_handle(output_name) | |
output_tensors.append(output_tensor) | |
return output_tensors | |
def get_infer_gpuid(): | |
sysstr = platform.system() | |
if sysstr == "Windows": | |
return 0 | |
if not paddle.device.is_compiled_with_rocm: | |
cmd = "env | grep CUDA_VISIBLE_DEVICES" | |
else: | |
cmd = "env | grep HIP_VISIBLE_DEVICES" | |
env_cuda = os.popen(cmd).readlines() | |
if len(env_cuda) == 0: | |
return 0 | |
else: | |
gpu_id = env_cuda[0].strip().split("=")[1] | |
return int(gpu_id[0]) | |
def draw_e2e_res(dt_boxes, strs, img_path): | |
src_im = cv2.imread(img_path) | |
for box, str in zip(dt_boxes, strs): | |
box = box.astype(np.int32).reshape((-1, 1, 2)) | |
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) | |
cv2.putText( | |
src_im, | |
str, | |
org=(int(box[0, 0, 0]), int(box[0, 0, 1])), | |
fontFace=cv2.FONT_HERSHEY_COMPLEX, | |
fontScale=0.7, | |
color=(0, 255, 0), | |
thickness=1) | |
return src_im | |
def draw_text_det_res(dt_boxes, img): | |
for box in dt_boxes: | |
box = np.array(box).astype(np.int32).reshape(-1, 2) | |
cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2) | |
return img | |
def resize_img(img, input_size=600): | |
""" | |
resize img and limit the longest side of the image to input_size | |
""" | |
img = np.array(img) | |
im_shape = img.shape | |
im_size_max = np.max(im_shape[0:2]) | |
im_scale = float(input_size) / float(im_size_max) | |
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) | |
return img | |
def draw_ocr(image, | |
boxes, | |
txts=None, | |
scores=None, | |
drop_score=0.5, | |
font_path="./doc/fonts/simfang.ttf"): | |
""" | |
Visualize the results of OCR detection and recognition | |
args: | |
image(Image|array): RGB image | |
boxes(list): boxes with shape(N, 4, 2) | |
txts(list): the texts | |
scores(list): txxs corresponding scores | |
drop_score(float): only scores greater than drop_threshold will be visualized | |
font_path: the path of font which is used to draw text | |
return(array): | |
the visualized img | |
""" | |
if scores is None: | |
scores = [1] * len(boxes) | |
box_num = len(boxes) | |
for i in range(box_num): | |
if scores is not None and (scores[i] < drop_score or | |
math.isnan(scores[i])): | |
continue | |
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) | |
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) | |
if txts is not None: | |
img = np.array(resize_img(image, input_size=600)) | |
txt_img = text_visual( | |
txts, | |
scores, | |
img_h=img.shape[0], | |
img_w=600, | |
threshold=drop_score, | |
font_path=font_path) | |
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) | |
return img | |
return image | |
def draw_ocr_box_txt(image, | |
boxes, | |
txts=None, | |
scores=None, | |
drop_score=0.5, | |
font_path="./doc/fonts/simfang.ttf"): | |
h, w = image.height, image.width | |
img_left = image.copy() | |
img_right = np.ones((h, w, 3), dtype=np.uint8) * 255 | |
random.seed(0) | |
draw_left = ImageDraw.Draw(img_left) | |
if txts is None or len(txts) != len(boxes): | |
txts = [None] * len(boxes) | |
for idx, (box, txt) in enumerate(zip(boxes, txts)): | |
if scores is not None and scores[idx] < drop_score: | |
continue | |
color = (random.randint(0, 255), random.randint(0, 255), | |
random.randint(0, 255)) | |
draw_left.polygon(box, fill=color) | |
img_right_text = draw_box_txt_fine((w, h), box, txt, font_path) | |
pts = np.array(box, np.int32).reshape((-1, 1, 2)) | |
cv2.polylines(img_right_text, [pts], True, color, 1) | |
img_right = cv2.bitwise_and(img_right, img_right_text) | |
img_left = Image.blend(image, img_left, 0.5) | |
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) | |
img_show.paste(img_left, (0, 0, w, h)) | |
img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h)) | |
return np.array(img_show) | |
def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"): | |
box_height = int( | |
math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][1])**2)) | |
box_width = int( | |
math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][1])**2)) | |
if box_height > 2 * box_width and box_height > 30: | |
img_text = Image.new('RGB', (box_height, box_width), (255, 255, 255)) | |
draw_text = ImageDraw.Draw(img_text) | |
if txt: | |
font = create_font(txt, (box_height, box_width), font_path) | |
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font) | |
img_text = img_text.transpose(Image.ROTATE_270) | |
else: | |
img_text = Image.new('RGB', (box_width, box_height), (255, 255, 255)) | |
draw_text = ImageDraw.Draw(img_text) | |
if txt: | |
font = create_font(txt, (box_width, box_height), font_path) | |
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font) | |
pts1 = np.float32( | |
[[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]]) | |
pts2 = np.array(box, dtype=np.float32) | |
M = cv2.getPerspectiveTransform(pts1, pts2) | |
img_text = np.array(img_text, dtype=np.uint8) | |
img_right_text = cv2.warpPerspective( | |
img_text, | |
M, | |
img_size, | |
flags=cv2.INTER_NEAREST, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=(255, 255, 255)) | |
return img_right_text | |
def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"): | |
font_size = int(sz[1] * 0.99) | |
font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
length = font.getlength(txt) | |
if length > sz[0]: | |
font_size = int(font_size * sz[0] / length) | |
font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
return font | |
def str_count(s): | |
""" | |
Count the number of Chinese characters, | |
a single English character and a single number | |
equal to half the length of Chinese characters. | |
args: | |
s(string): the input of string | |
return(int): | |
the number of Chinese characters | |
""" | |
import string | |
count_zh = count_pu = 0 | |
s_len = len(s) | |
en_dg_count = 0 | |
for c in s: | |
if c in string.ascii_letters or c.isdigit() or c.isspace(): | |
en_dg_count += 1 | |
elif c.isalpha(): | |
count_zh += 1 | |
else: | |
count_pu += 1 | |
return s_len - math.ceil(en_dg_count / 2) | |
def text_visual(texts, | |
scores, | |
img_h=400, | |
img_w=600, | |
threshold=0., | |
font_path="./doc/simfang.ttf"): | |
""" | |
create new blank img and draw txt on it | |
args: | |
texts(list): the text will be draw | |
scores(list|None): corresponding score of each txt | |
img_h(int): the height of blank img | |
img_w(int): the width of blank img | |
font_path: the path of font which is used to draw text | |
return(array): | |
""" | |
if scores is not None: | |
assert len(texts) == len( | |
scores), "The number of txts and corresponding scores must match" | |
def create_blank_img(): | |
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 | |
blank_img[:, img_w - 1:] = 0 | |
blank_img = Image.fromarray(blank_img).convert("RGB") | |
draw_txt = ImageDraw.Draw(blank_img) | |
return blank_img, draw_txt | |
blank_img, draw_txt = create_blank_img() | |
font_size = 20 | |
txt_color = (0, 0, 0) | |
font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
gap = font_size + 5 | |
txt_img_list = [] | |
count, index = 1, 0 | |
for idx, txt in enumerate(texts): | |
index += 1 | |
if scores[idx] < threshold or math.isnan(scores[idx]): | |
index -= 1 | |
continue | |
first_line = True | |
while str_count(txt) >= img_w // font_size - 4: | |
tmp = txt | |
txt = tmp[:img_w // font_size - 4] | |
if first_line: | |
new_txt = str(index) + ': ' + txt | |
first_line = False | |
else: | |
new_txt = ' ' + txt | |
draw_txt.text((0, gap * count), new_txt, txt_color, font=font) | |
txt = tmp[img_w // font_size - 4:] | |
if count >= img_h // gap - 1: | |
txt_img_list.append(np.array(blank_img)) | |
blank_img, draw_txt = create_blank_img() | |
count = 0 | |
count += 1 | |
if first_line: | |
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) | |
else: | |
new_txt = " " + txt + " " + '%.3f' % (scores[idx]) | |
draw_txt.text((0, gap * count), new_txt, txt_color, font=font) | |
# whether add new blank img or not | |
if count >= img_h // gap - 1 and idx + 1 < len(texts): | |
txt_img_list.append(np.array(blank_img)) | |
blank_img, draw_txt = create_blank_img() | |
count = 0 | |
count += 1 | |
txt_img_list.append(np.array(blank_img)) | |
if len(txt_img_list) == 1: | |
blank_img = np.array(txt_img_list[0]) | |
else: | |
blank_img = np.concatenate(txt_img_list, axis=1) | |
return np.array(blank_img) | |
def base64_to_cv2(b64str): | |
import base64 | |
data = base64.b64decode(b64str.encode('utf8')) | |
data = np.frombuffer(data, np.uint8) | |
data = cv2.imdecode(data, cv2.IMREAD_COLOR) | |
return data | |
def draw_boxes(image, boxes, scores=None, drop_score=0.5): | |
if scores is None: | |
scores = [1] * len(boxes) | |
for (box, score) in zip(boxes, scores): | |
if score < drop_score: | |
continue | |
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) | |
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) | |
return image | |
def get_rotate_crop_image(img, points): | |
''' | |
img_height, img_width = img.shape[0:2] | |
left = int(np.min(points[:, 0])) | |
right = int(np.max(points[:, 0])) | |
top = int(np.min(points[:, 1])) | |
bottom = int(np.max(points[:, 1])) | |
img_crop = img[top:bottom, left:right, :].copy() | |
points[:, 0] = points[:, 0] - left | |
points[:, 1] = points[:, 1] - top | |
''' | |
assert len(points) == 4, "shape of points must be 4*2" | |
img_crop_width = int( | |
max( | |
np.linalg.norm(points[0] - points[1]), | |
np.linalg.norm(points[2] - points[3]))) | |
img_crop_height = int( | |
max( | |
np.linalg.norm(points[0] - points[3]), | |
np.linalg.norm(points[1] - points[2]))) | |
pts_std = np.float32([[0, 0], [img_crop_width, 0], | |
[img_crop_width, img_crop_height], | |
[0, img_crop_height]]) | |
M = cv2.getPerspectiveTransform(points, pts_std) | |
dst_img = cv2.warpPerspective( | |
img, | |
M, (img_crop_width, img_crop_height), | |
borderMode=cv2.BORDER_REPLICATE, | |
flags=cv2.INTER_CUBIC) | |
dst_img_height, dst_img_width = dst_img.shape[0:2] | |
if dst_img_height * 1.0 / dst_img_width >= 1.5: | |
dst_img = np.rot90(dst_img) | |
return dst_img | |
def get_minarea_rect_crop(img, points): | |
bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32)) | |
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) | |
index_a, index_b, index_c, index_d = 0, 1, 2, 3 | |
if points[1][1] > points[0][1]: | |
index_a = 0 | |
index_d = 1 | |
else: | |
index_a = 1 | |
index_d = 0 | |
if points[3][1] > points[2][1]: | |
index_b = 2 | |
index_c = 3 | |
else: | |
index_b = 3 | |
index_c = 2 | |
box = [points[index_a], points[index_b], points[index_c], points[index_d]] | |
crop_img = get_rotate_crop_image(img, np.array(box)) | |
return crop_img | |
def check_gpu(use_gpu): | |
if use_gpu and not paddle.is_compiled_with_cuda(): | |
use_gpu = False | |
return use_gpu | |
if __name__ == '__main__': | |
pass | |