Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import paddle.nn.functional as F | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import paddle | |
from ppocr.data import create_operators, transform | |
from ppocr.modeling.architectures import build_model | |
from ppocr.utils.save_load import load_model | |
import tools.program as program | |
import time | |
def read_class_list(filepath): | |
ret = {} | |
with open(filepath, "r") as f: | |
lines = f.readlines() | |
for idx, line in enumerate(lines): | |
ret[idx] = line.strip("\n") | |
return ret | |
def draw_kie_result(batch, node, idx_to_cls, count): | |
img = batch[6].copy() | |
boxes = batch[7] | |
h, w = img.shape[:2] | |
pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255 | |
max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) | |
node_pred_label = max_idx.numpy().tolist() | |
node_pred_score = max_value.numpy().tolist() | |
for i, box in enumerate(boxes): | |
if i >= len(node_pred_label): | |
break | |
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]], | |
[box[0], box[3]]] | |
Pts = np.array([new_box], np.int32) | |
cv2.polylines( | |
img, [Pts.reshape((-1, 1, 2))], | |
True, | |
color=(255, 255, 0), | |
thickness=1) | |
x_min = int(min([point[0] for point in new_box])) | |
y_min = int(min([point[1] for point in new_box])) | |
pred_label = node_pred_label[i] | |
if pred_label in idx_to_cls: | |
pred_label = idx_to_cls[pred_label] | |
pred_score = '{:.2f}'.format(node_pred_score[i]) | |
text = pred_label + '(' + pred_score + ')' | |
cv2.putText(pred_img, text, (x_min * 2, y_min), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) | |
vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255 | |
vis_img[:, :w] = img | |
vis_img[:, w:] = pred_img | |
save_kie_path = os.path.dirname(config['Global'][ | |
'save_res_path']) + "/kie_results/" | |
if not os.path.exists(save_kie_path): | |
os.makedirs(save_kie_path) | |
save_path = os.path.join(save_kie_path, str(count) + ".png") | |
cv2.imwrite(save_path, vis_img) | |
logger.info("The Kie Image saved in {}".format(save_path)) | |
def write_kie_result(fout, node, data): | |
""" | |
Write infer result to output file, sorted by the predict label of each line. | |
The format keeps the same as the input with additional score attribute. | |
""" | |
import json | |
label = data['label'] | |
annotations = json.loads(label) | |
max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) | |
node_pred_label = max_idx.numpy().tolist() | |
node_pred_score = max_value.numpy().tolist() | |
res = [] | |
for i, label in enumerate(node_pred_label): | |
pred_score = '{:.2f}'.format(node_pred_score[i]) | |
pred_res = { | |
'label': label, | |
'transcription': annotations[i]['transcription'], | |
'score': pred_score, | |
'points': annotations[i]['points'], | |
} | |
res.append(pred_res) | |
res.sort(key=lambda x: x['label']) | |
fout.writelines([json.dumps(res, ensure_ascii=False) + '\n']) | |
def main(): | |
global_config = config['Global'] | |
# build model | |
model = build_model(config['Architecture']) | |
load_model(config, model) | |
# create data ops | |
transforms = [] | |
for op in config['Eval']['dataset']['transforms']: | |
transforms.append(op) | |
data_dir = config['Eval']['dataset']['data_dir'] | |
ops = create_operators(transforms, global_config) | |
save_res_path = config['Global']['save_res_path'] | |
class_path = config['Global']['class_path'] | |
idx_to_cls = read_class_list(class_path) | |
os.makedirs(os.path.dirname(save_res_path), exist_ok=True) | |
model.eval() | |
warmup_times = 0 | |
count_t = [] | |
with open(save_res_path, "w") as fout: | |
with open(config['Global']['infer_img'], "rb") as f: | |
lines = f.readlines() | |
for index, data_line in enumerate(lines): | |
if index == 10: | |
warmup_t = time.time() | |
data_line = data_line.decode('utf-8') | |
substr = data_line.strip("\n").split("\t") | |
img_path, label = data_dir + "/" + substr[0], substr[1] | |
data = {'img_path': img_path, 'label': label} | |
with open(data['img_path'], 'rb') as f: | |
img = f.read() | |
data['image'] = img | |
st = time.time() | |
batch = transform(data, ops) | |
batch_pred = [0] * len(batch) | |
for i in range(len(batch)): | |
batch_pred[i] = paddle.to_tensor( | |
np.expand_dims( | |
batch[i], axis=0)) | |
st = time.time() | |
node, edge = model(batch_pred) | |
node = F.softmax(node, -1) | |
count_t.append(time.time() - st) | |
draw_kie_result(batch, node, idx_to_cls, index) | |
write_kie_result(fout, node, data) | |
fout.close() | |
logger.info("success!") | |
logger.info("It took {} s for predict {} images.".format( | |
np.sum(count_t), len(count_t))) | |
ips = len(count_t[warmup_times:]) / np.sum(count_t[warmup_times:]) | |
logger.info("The ips is {} images/s".format(ips)) | |
if __name__ == '__main__': | |
config, device, logger, vdl_writer = program.preprocess() | |
main() | |