Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import os | |
import sys | |
import json | |
from PIL import Image | |
import cv2 | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.insert(0, __dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import paddle | |
from ppocr.data import create_operators, transform | |
from ppocr.modeling.architectures import build_model | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.save_load import load_model | |
from ppocr.utils.utility import get_image_file_list | |
import tools.program as program | |
def main(): | |
global_config = config['Global'] | |
# build post process | |
post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
# sr transform | |
config['Architecture']["Transform"]['infer_mode'] = True | |
model = build_model(config['Architecture']) | |
load_model(config, model) | |
# create data ops | |
transforms = [] | |
for op in config['Eval']['dataset']['transforms']: | |
op_name = list(op)[0] | |
if 'Label' in op_name: | |
continue | |
elif op_name in ['SRResize']: | |
op[op_name]['infer_mode'] = True | |
elif op_name == 'KeepKeys': | |
op[op_name]['keep_keys'] = ['img_lr'] | |
transforms.append(op) | |
global_config['infer_mode'] = True | |
ops = create_operators(transforms, global_config) | |
save_visual_path = config['Global'].get('save_visual', "infer_result/") | |
if not os.path.exists(os.path.dirname(save_visual_path)): | |
os.makedirs(os.path.dirname(save_visual_path)) | |
model.eval() | |
for file in get_image_file_list(config['Global']['infer_img']): | |
logger.info("infer_img: {}".format(file)) | |
img = Image.open(file).convert("RGB") | |
data = {'image_lr': img} | |
batch = transform(data, ops) | |
images = np.expand_dims(batch[0], axis=0) | |
images = paddle.to_tensor(images) | |
preds = model(images) | |
sr_img = preds["sr_img"][0] | |
lr_img = preds["lr_img"][0] | |
fm_sr = (sr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) | |
fm_lr = (lr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) | |
img_name_pure = os.path.split(file)[-1] | |
cv2.imwrite("{}/sr_{}".format(save_visual_path, img_name_pure), | |
fm_sr[:, :, ::-1]) | |
logger.info("The visualized image saved in infer_result/sr_{}".format( | |
img_name_pure)) | |
logger.info("success!") | |
if __name__ == '__main__': | |
config, device, logger, vdl_writer = program.preprocess() | |
main() | |