Scan_Doc_App / Rotate /tools /infer_vqa_token_ser.py
datdo2717's picture
rotate
c5b5437
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.visual import draw_ser_results
from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps
import tools.program as program
def to_tensor(data):
import numbers
from collections import defaultdict
data_dict = defaultdict(list)
to_tensor_idxs = []
for idx, v in enumerate(data):
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
if idx not in to_tensor_idxs:
to_tensor_idxs.append(idx)
data_dict[idx].append(v)
for idx in to_tensor_idxs:
data_dict[idx] = paddle.to_tensor(data_dict[idx])
return list(data_dict.values())
class SerPredictor(object):
def __init__(self, config):
global_config = config['Global']
# build post process
self.post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
self.model = build_model(config['Architecture'])
load_model(
config, self.model, model_type=config['Architecture']["model_type"])
from paddleocr import PaddleOCR
self.ocr_engine = PaddleOCR(use_angle_cls=False, show_log=False)
# create data ops
transforms = []
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
op[op_name]['ocr_engine'] = self.ocr_engine
elif op_name == 'KeepKeys':
op[op_name]['keep_keys'] = [
'input_ids', 'labels', 'bbox', 'image', 'attention_mask',
'token_type_ids', 'segment_offset_id', 'ocr_info',
'entities'
]
transforms.append(op)
global_config['infer_mode'] = True
self.ops = create_operators(config['Eval']['dataset']['transforms'],
global_config)
self.model.eval()
def __call__(self, img_path):
with open(img_path, 'rb') as f:
img = f.read()
data = {'image': img}
batch = transform(data, self.ops)
batch = to_tensor(batch)
preds = self.model(batch)
post_result = self.post_process_class(
preds,
attention_masks=batch[4],
segment_offset_ids=batch[6],
ocr_infos=batch[7])
return post_result, batch
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
os.makedirs(config['Global']['save_res_path'], exist_ok=True)
ser_engine = SerPredictor(config)
infer_imgs = get_image_file_list(config['Global']['infer_img'])
with open(
os.path.join(config['Global']['save_res_path'],
"infer_results.txt"),
"w",
encoding='utf-8') as fout:
for idx, img_path in enumerate(infer_imgs):
save_img_path = os.path.join(
config['Global']['save_res_path'],
os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
logger.info("process: [{}/{}], save result to {}".format(
idx, len(infer_imgs), save_img_path))
result, _ = ser_engine(img_path)
result = result[0]
fout.write(img_path + "\t" + json.dumps(
{
"ocr_info": result,
}, ensure_ascii=False) + "\n")
img_res = draw_ser_results(img_path, result)
cv2.imwrite(save_img_path, img_res)