Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import json | |
import paddle | |
import paddle.distributed as dist | |
from ppocr.data import create_operators, transform | |
from ppocr.modeling.architectures import build_model | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.save_load import load_model | |
from ppocr.utils.visual import draw_re_results | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps, print_dict | |
from tools.program import ArgsParser, load_config, merge_config, check_gpu | |
from tools.infer_vqa_token_ser import SerPredictor | |
class ReArgsParser(ArgsParser): | |
def __init__(self): | |
super(ReArgsParser, self).__init__() | |
self.add_argument( | |
"-c_ser", "--config_ser", help="ser configuration file to use") | |
self.add_argument( | |
"-o_ser", | |
"--opt_ser", | |
nargs='+', | |
help="set ser configuration options ") | |
def parse_args(self, argv=None): | |
args = super(ReArgsParser, self).parse_args(argv) | |
assert args.config_ser is not None, \ | |
"Please specify --config_ser=ser_configure_file_path." | |
args.opt_ser = self._parse_opt(args.opt_ser) | |
return args | |
def make_input(ser_inputs, ser_results): | |
entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2} | |
entities = ser_inputs[8][0] | |
ser_results = ser_results[0] | |
assert len(entities) == len(ser_results) | |
# entities | |
start = [] | |
end = [] | |
label = [] | |
entity_idx_dict = {} | |
for i, (res, entity) in enumerate(zip(ser_results, entities)): | |
if res['pred'] == 'O': | |
continue | |
entity_idx_dict[len(start)] = i | |
start.append(entity['start']) | |
end.append(entity['end']) | |
label.append(entities_labels[res['pred']]) | |
entities = dict(start=start, end=end, label=label) | |
# relations | |
head = [] | |
tail = [] | |
for i in range(len(entities["label"])): | |
for j in range(len(entities["label"])): | |
if entities["label"][i] == 1 and entities["label"][j] == 2: | |
head.append(i) | |
tail.append(j) | |
relations = dict(head=head, tail=tail) | |
batch_size = ser_inputs[0].shape[0] | |
entities_batch = [] | |
relations_batch = [] | |
entity_idx_dict_batch = [] | |
for b in range(batch_size): | |
entities_batch.append(entities) | |
relations_batch.append(relations) | |
entity_idx_dict_batch.append(entity_idx_dict) | |
ser_inputs[8] = entities_batch | |
ser_inputs.append(relations_batch) | |
# remove ocr_info segment_offset_id and label in ser input | |
ser_inputs.pop(7) | |
ser_inputs.pop(6) | |
ser_inputs.pop(1) | |
return ser_inputs, entity_idx_dict_batch | |
class SerRePredictor(object): | |
def __init__(self, config, ser_config): | |
self.ser_engine = SerPredictor(ser_config) | |
# init re model | |
global_config = config['Global'] | |
# build post process | |
self.post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
# build model | |
self.model = build_model(config['Architecture']) | |
load_model( | |
config, self.model, model_type=config['Architecture']["model_type"]) | |
self.model.eval() | |
def __call__(self, img_path): | |
ser_results, ser_inputs = self.ser_engine(img_path) | |
paddle.save(ser_inputs, 'ser_inputs.npy') | |
paddle.save(ser_results, 'ser_results.npy') | |
re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results) | |
preds = self.model(re_input) | |
post_result = self.post_process_class( | |
preds, | |
ser_results=ser_results, | |
entity_idx_dict_batch=entity_idx_dict_batch) | |
return post_result | |
def preprocess(): | |
FLAGS = ReArgsParser().parse_args() | |
config = load_config(FLAGS.config) | |
config = merge_config(config, FLAGS.opt) | |
ser_config = load_config(FLAGS.config_ser) | |
ser_config = merge_config(ser_config, FLAGS.opt_ser) | |
logger = get_logger() | |
# check if set use_gpu=True in paddlepaddle cpu version | |
use_gpu = config['Global']['use_gpu'] | |
check_gpu(use_gpu) | |
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu' | |
device = paddle.set_device(device) | |
logger.info('{} re config {}'.format('*' * 10, '*' * 10)) | |
print_dict(config, logger) | |
logger.info('\n') | |
logger.info('{} ser config {}'.format('*' * 10, '*' * 10)) | |
print_dict(ser_config, logger) | |
logger.info('train with paddle {} and device {}'.format(paddle.__version__, | |
device)) | |
return config, ser_config, device, logger | |
if __name__ == '__main__': | |
config, ser_config, device, logger = preprocess() | |
os.makedirs(config['Global']['save_res_path'], exist_ok=True) | |
ser_re_engine = SerRePredictor(config, ser_config) | |
infer_imgs = get_image_file_list(config['Global']['infer_img']) | |
with open( | |
os.path.join(config['Global']['save_res_path'], | |
"infer_results.txt"), | |
"w", | |
encoding='utf-8') as fout: | |
for idx, img_path in enumerate(infer_imgs): | |
save_img_path = os.path.join( | |
config['Global']['save_res_path'], | |
os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg") | |
logger.info("process: [{}/{}], save result to {}".format( | |
idx, len(infer_imgs), save_img_path)) | |
result = ser_re_engine(img_path) | |
result = result[0] | |
fout.write(img_path + "\t" + json.dumps( | |
{ | |
"ser_result": result, | |
}, ensure_ascii=False) + "\n") | |
img_res = draw_re_results(img_path, result) | |
cv2.imwrite(save_img_path, img_res) | |