Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) | |
from ppocr.utils.logging import get_logger | |
logger = get_logger() | |
import cv2 | |
import numpy as np | |
import time | |
from PIL import Image | |
from ppocr.utils.utility import get_image_file_list | |
from tools.infer.utility import draw_ocr, draw_boxes, str2bool | |
from ppstructure.utility import draw_structure_result | |
from ppstructure.predict_system import to_excel | |
import requests | |
import json | |
import base64 | |
def cv2_to_base64(image): | |
return base64.b64encode(image).decode('utf8') | |
def draw_server_result(image_file, res): | |
img = cv2.imread(image_file) | |
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
if len(res) == 0: | |
return np.array(image) | |
keys = res[0].keys() | |
if 'text_region' not in keys: # for ocr_rec, draw function is invalid | |
logger.info("draw function is invalid for ocr_rec!") | |
return None | |
elif 'text' not in keys: # for ocr_det | |
logger.info("draw text boxes only!") | |
boxes = [] | |
for dno in range(len(res)): | |
boxes.append(res[dno]['text_region']) | |
boxes = np.array(boxes) | |
draw_img = draw_boxes(image, boxes) | |
return draw_img | |
else: # for ocr_system | |
logger.info("draw boxes and texts!") | |
boxes = [] | |
texts = [] | |
scores = [] | |
for dno in range(len(res)): | |
boxes.append(res[dno]['text_region']) | |
texts.append(res[dno]['text']) | |
scores.append(res[dno]['confidence']) | |
boxes = np.array(boxes) | |
scores = np.array(scores) | |
draw_img = draw_ocr( | |
image, boxes, texts, scores, draw_txt=True, drop_score=0.5) | |
return draw_img | |
def save_structure_res(res, save_folder, image_file): | |
img = cv2.imread(image_file) | |
excel_save_folder = os.path.join(save_folder, os.path.basename(image_file)) | |
os.makedirs(excel_save_folder, exist_ok=True) | |
# save res | |
with open( | |
os.path.join(excel_save_folder, 'res.txt'), 'w', | |
encoding='utf8') as f: | |
for region in res: | |
if region['type'] == 'Table': | |
excel_path = os.path.join(excel_save_folder, | |
'{}.xlsx'.format(region['bbox'])) | |
to_excel(region['res'], excel_path) | |
elif region['type'] == 'Figure': | |
x1, y1, x2, y2 = region['bbox'] | |
print(region['bbox']) | |
roi_img = img[y1:y2, x1:x2, :] | |
img_path = os.path.join(excel_save_folder, | |
'{}.jpg'.format(region['bbox'])) | |
cv2.imwrite(img_path, roi_img) | |
else: | |
for text_result in region['res']: | |
f.write('{}\n'.format(json.dumps(text_result))) | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
is_visualize = False | |
headers = {"Content-type": "application/json"} | |
cnt = 0 | |
total_time = 0 | |
for image_file in image_file_list: | |
img = open(image_file, 'rb').read() | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
img_name = os.path.basename(image_file) | |
# seed http request | |
starttime = time.time() | |
data = {'images': [cv2_to_base64(img)]} | |
r = requests.post( | |
url=args.server_url, headers=headers, data=json.dumps(data)) | |
elapse = time.time() - starttime | |
total_time += elapse | |
logger.info("Predict time of %s: %.3fs" % (image_file, elapse)) | |
res = r.json()["results"][0] | |
logger.info(res) | |
if args.visualize: | |
draw_img = None | |
if 'structure_table' in args.server_url: | |
to_excel(res['html'], './{}.xlsx'.format(img_name)) | |
elif 'structure_system' in args.server_url: | |
save_structure_res(res['regions'], args.output, image_file) | |
else: | |
draw_img = draw_server_result(image_file, res) | |
if draw_img is not None: | |
if not os.path.exists(args.output): | |
os.makedirs(args.output) | |
cv2.imwrite( | |
os.path.join(args.output, os.path.basename(image_file)), | |
draw_img[:, :, ::-1]) | |
logger.info("The visualized image saved in {}".format( | |
os.path.join(args.output, os.path.basename(image_file)))) | |
cnt += 1 | |
if cnt % 100 == 0: | |
logger.info("{} processed".format(cnt)) | |
logger.info("avg time cost: {}".format(float(total_time) / cnt)) | |
def parse_args(): | |
import argparse | |
parser = argparse.ArgumentParser(description="args for hub serving") | |
parser.add_argument("--server_url", type=str, required=True) | |
parser.add_argument("--image_dir", type=str, required=True) | |
parser.add_argument("--visualize", type=str2bool, default=False) | |
parser.add_argument("--output", type=str, default='./hubserving_result') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
main(args) | |