"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 39
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# prompt: wie groß ist das dataframe?\n",
+ "\n",
+ "df.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "3jmt9tybTMLb",
+ "outputId": "b1d40007-7567-488f-c3de-d3dccfe4b7e4"
+ },
+ "execution_count": 40,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(500, 21)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 40
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# prompt: stelle die häufigkeitenverteilung der spalte meta_initiant dar\n",
+ "\n",
+ "df['meta_initiant'].value_counts()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 993
+ },
+ "id": "atYQfhdMTTCa",
+ "outputId": "c0f9be5e-3a2c-4074-c2e5-39692e1dee10"
+ },
+ "execution_count": 41,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "meta_initiant\n",
+ "Auswärtiges Amt 240\n",
+ "Bundesministerium für Digitales und Verkehr 28\n",
+ "Bundesministerium der Justiz 26\n",
+ "Bundesministerium der Finanzen 24\n",
+ "Bundesministerium des Innern und für Heimat 23\n",
+ "Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung 22\n",
+ "Bundesministerium für Arbeit und Soziales 19\n",
+ "Bundesministerium für Ernährung und Landwirtschaft 18\n",
+ "Bundesaufsichtsamt für Flugsicherung 18\n",
+ "Bundesministerium für Wirtschaft und Klimaschutz 16\n",
+ "Bundesministerium für Gesundheit 13\n",
+ "Bundesministerium für Bildung und Forschung 11\n",
+ "Bundesministerium der Verteidigung 10\n",
+ "Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz 7\n",
+ "Generaldirektion Wasserstraßen und Schifffahrt 7\n",
+ "DRV Bund 2\n",
+ "Bundesamt für Logistik und Mobilität 2\n",
+ "Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen 2\n",
+ "Sonstige 2\n",
+ "Bundesministerium für Familie, Senioren, Frauen und Jugend 2\n",
+ "Unabhängiger Kontrollrat 1\n",
+ "Deutscher Bundestag 1\n",
+ "Luftfahrt-Bundesamt 1\n",
+ "Kassenärztliche Bundesvereinigung 1\n",
+ "Bundesanstalt für Finanzdienstleistungsaufsicht 1\n",
+ "Sozialversicherung für Landwirtschaft, Forsten und Gartenbau 1\n",
+ "Bundesamt für Verbraucherschutz und Lebensmittelsicherheit 1\n",
+ "Bundesagentur für Arbeit 1\n",
+ "Name: count, dtype: int64"
+ ],
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
count
\n",
+ "
\n",
+ "
\n",
+ "
meta_initiant
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Auswärtiges Amt
\n",
+ "
240
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Digitales und Verkehr
\n",
+ "
28
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium der Justiz
\n",
+ "
26
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium der Finanzen
\n",
+ "
24
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium des Innern und für Heimat
\n",
+ "
23
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung
\n",
+ "
22
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Arbeit und Soziales
\n",
+ "
19
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Ernährung und Landwirtschaft
\n",
+ "
18
\n",
+ "
\n",
+ "
\n",
+ "
Bundesaufsichtsamt für Flugsicherung
\n",
+ "
18
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Wirtschaft und Klimaschutz
\n",
+ "
16
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Gesundheit
\n",
+ "
13
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Bildung und Forschung
\n",
+ "
11
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium der Verteidigung
\n",
+ "
10
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz
\n",
+ "
7
\n",
+ "
\n",
+ "
\n",
+ "
Generaldirektion Wasserstraßen und Schifffahrt
\n",
+ "
7
\n",
+ "
\n",
+ "
\n",
+ "
DRV Bund
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Bundesamt für Logistik und Mobilität
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Sonstige
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Bundesministerium für Familie, Senioren, Frauen und Jugend
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Unabhängiger Kontrollrat
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Deutscher Bundestag
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Luftfahrt-Bundesamt
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Kassenärztliche Bundesvereinigung
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Bundesanstalt für Finanzdienstleistungsaufsicht
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Sozialversicherung für Landwirtschaft, Forsten und Gartenbau
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Bundesamt für Verbraucherschutz und Lebensmittelsicherheit
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Bundesagentur für Arbeit
\n",
+ "
1
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 41
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# prompt: visualisiere die spalte published\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "# Convert 'published' column to datetime objects\n",
+ "df['published'] = pd.to_datetime(df['published'])\n",
+ "\n",
+ "# Create the plot\n",
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.histplot(df['published'], bins=30) # Adjust bins as needed\n",
+ "plt.xlabel('Published Date')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.title('Distribution of Publication Dates')\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 607
+ },
+ "id": "dmvjRjFPTf9V",
+ "outputId": "6b91dc32-5d00-42cb-8b79-4a36bbf42b45"
+ },
+ "execution_count": 42,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhWElEQVR4nO3deVhUhf7H8c8gMIKAioiggpCauKFmZpZrmqgtmtotzVwrK7PUuhndezPNstXUUtPKpcW6V29ZV3PPpcw9d3FNwhLFcWMVWc7vDx/mJ7mCcM4MvF/Pw/N4zpw55zPjVxs/nXPGZhiGIQAAAAAAAMBEHlYHAAAAAAAAQOlDKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAgBt79dVXZbPZTDlW27Zt1bZtW+fyqlWrZLPZNG/ePFOO379/f0VERJhyrMJKTU3VY489ppCQENlsNg0bNsy0Y/fv319+fn7Xta3NZtOrr77qXJ41a5ZsNpvi4+OLJ1wBsgAAgNKDUgoAABeRVwzk/ZQtW1ZVq1ZVTEyMJk2apJSUlCI5ztGjR/Xqq69q27ZtRbK/ouTK2a7HG2+8oVmzZumpp57S559/rkcfffSK20ZEROT7/Q4ODlarVq307bffmpjYHD/88IPLFU95hW7ej6+vr8LDw3Xfffdp5syZyszMLPS+XfH1AgDgijytDgAAAPIbM2aMIiMjlZWVpWPHjmnVqlUaNmyYxo8fr++//17R0dHObf/5z3/qpZdeKtD+jx49qtGjRysiIkKNGze+7uctXbq0QMcpjKtl+/jjj5Wbm1vsGW7Ejz/+qNtvv12jRo26ru0bN26s559/XtKF1z5t2jR1795dU6dO1ZNPPlmcUfN59NFH9fDDD8tutxfL/n/44QdNnjz5skVNRkaGPD2t+0g6depU+fn5KTMzU3/++aeWLFmigQMHasKECVqwYIHCwsIKvM+rvV4AAPD/KKUAAHAxnTt31q233upcjo2N1Y8//qh7771X999/v+Li4uTj4yNJ8vT0LPZ/0Kenp8vX11fe3t7Fepxr8fLysvT41yMpKUn16tW77u2rVaumPn36OJf79u2rWrVq6f333ze1lCpTpozKlClj2vEuVrZsWUuOm6dnz54KCgpyLr/yyiv68ssv1bdvXz344INav369hekAACjZuHwPAAA3cNddd+lf//qXfv/9d33xxRfO9Ze7p9SyZcvUsmVLVahQQX5+fqpTp45efvllSRfuA9WsWTNJ0oABA5yXLs2aNUvShftGNWjQQFu2bFHr1q3l6+vrfO5f7ymVJycnRy+//LJCQkJUrlw53X///Tpy5Ei+bSIiItS/f/9LnnvxPq+V7XL3lEpLS9Pzzz+vsLAw2e121alTR++++64Mw8i3nc1m0zPPPKP58+erQYMGstvtql+/vhYvXnz5N/wvkpKSNGjQIFWpUkVly5ZVo0aNNHv2bOfjeffXOnz4sBYuXOjMXtB7NIWEhKhu3bo6fPhwvv2uWrUq33bx8fH53puL/fbbb4qJiVG5cuVUtWpVjRkz5pL346+udE+pRYsWqU2bNvL391dAQICaNWumOXPmOB//6aef9OCDDyo8PFx2u11hYWEaPny4MjIynNv0799fkydPlqR8l8vludw9pbZu3arOnTsrICBAfn5+at++/SXlUF7mtWvXasSIEapcubLKlSunBx54QCdOnLjq672WRx55RI899pg2bNigZcuWFenrzc3N1YQJE1S/fn2VLVtWVapU0eDBg3X69Ol8GTZv3qyYmBgFBQXJx8dHkZGRGjhw4A29LgAAXA1nSgEA4CYeffRRvfzyy1q6dKkef/zxy26ze/du3XvvvYqOjtaYMWNkt9t18OBBrV27VpJUt25djRkzRq+88oqeeOIJtWrVSpJ0xx13OPdx8uRJde7cWQ8//LD69OmjKlWqXDXX66+/LpvNppEjRyopKUkTJkxQhw4dtG3bNucZXdfjerJdzDAM3X///Vq5cqUGDRqkxo0ba8mSJfr73/+uP//8U++//36+7X/++Wd98803evrpp+Xv769JkyapR48eSkhIUKVKla6YKyMjQ23bttXBgwf1zDPPKDIyUnPnzlX//v115swZPffcc6pbt64+//xzDR8+XNWrV3dekle5cuXrfv2SlJWVpSNHjlw1z9Xk5OSoU6dOuv322/X2229r8eLFGjVqlLKzszVmzJgC7WvWrFkaOHCg6tevr9jYWFWoUEFbt27V4sWL1bt3b0nS3LlzlZ6erqeeekqVKlXSxo0b9cEHH+iPP/7Q3LlzJUmDBw/W0aNHtWzZMn3++efXPO7u3bvVqlUrBQQE6MUXX5SXl5emTZumtm3bavXq1WrevHm+7YcOHaqKFStq1KhRio+P14QJE/TMM8/o3//+d4Fe7189+uijmj59upYuXaq77767yF7v4MGDNWvWLA0YMEDPPvusDh8+rA8//FBbt27V2rVr5eXlpaSkJHXs2FGVK1fWSy+9pAoVKig+Pl7ffPPNDb0mAABcjgEAAFzCzJkzDUnGpk2brrhN+fLljSZNmjiXR40aZVz8n/P333/fkGScOHHiivvYtGmTIcmYOXPmJY+1adPGkGR89NFHl32sTZs2zuWVK1cakoxq1aoZycnJzvX/+c9/DEnGxIkTnetq1Khh9OvX75r7vFq2fv36GTVq1HAuz58/35BkjB07Nt92PXv2NGw2m3Hw4EHnOkmGt7d3vnXbt283JBkffPDBJce62IQJEwxJxhdffOFcd/78eaNFixaGn59fvtdeo0YN45577rnq/i7etmPHjsaJEyeMEydOGNu3bzcefvhhQ5IxdOhQwzD+/z1euXJlvucePnz4kvepX79++Z5rGIaRm5tr3HPPPYa3t3e+mZBkjBo1yrmcN3uHDx82DMMwzpw5Y/j7+xvNmzc3MjIy8h07NzfX+ev09PRLXte4ceMMm81m/P777851Q4YMMa70sfOvWbp162Z4e3sbhw4dcq47evSo4e/vb7Ru3fqSzB06dMiXafjw4UaZMmWMM2fOXPZ4efL+7Fzpz8rp06cNScYDDzxQZK/3p59+MiQZX375Zb71ixcvzrf+22+/vebfBQAAlARcvgcAgBvx8/O76rfwVahQQZL03XffFfqm4Ha7XQMGDLju7fv27St/f3/ncs+ePRUaGqoffvihUMe/Xj/88IPKlCmjZ599Nt/6559/XoZhaNGiRfnWd+jQQTVr1nQuR0dHKyAgQL/99ts1jxMSEqJevXo513l5eenZZ59VamqqVq9eXejXsHTpUlWuXFmVK1dWo0aNNHfuXD366KN66623Cr3PZ555xvnrvMsWz58/r+XLl1/3PpYtW6aUlBS99NJLl9zz6eJL0S4+Ey4tLU0Oh0N33HGHDMPQ1q1bC5w9JydHS5cuVbdu3XTTTTc514eGhqp37976+eeflZycnO85TzzxRL5MrVq1Uk5Ojn7//fcCH/9ifn5+kpTvz9uNvt65c+eqfPnyuvvuu+VwOJw/TZs2lZ+fn1auXCnp//8cL1iwQFlZWTf0OgAAcGWUUgAAuJHU1NR8BdBfPfTQQ7rzzjv12GOPqUqVKnr44Yf1n//8p0AFVbVq1Qp0U/PatWvnW7bZbKpVq1aB76dUUL///ruqVq16yftRt25d5+MXCw8Pv2QfFStWvORePpc7Tu3ateXhkf9j05WOUxDNmzfXsmXLtHz5cv3yyy9yOBz67LPPCnTZ48U8PDzylTmSdPPNN0tSgX4/Dh06JElq0KDBVbdLSEhQ//79FRgYKD8/P1WuXFlt2rSRJJ09e7YAyS84ceKE0tPTVadOnUseq1u3rnJzcy+5X9lff18rVqwoSdf8fb2W1NRUSco3Xzf6eg8cOKCzZ88qODjYWUbm/aSmpiopKUmS1KZNG/Xo0UOjR49WUFCQunbtqpkzZyozM/OGXhMAAK6Ge0oBAOAm/vjjD509e1a1atW64jY+Pj5as2aNVq5cqYULF2rx4sX697//rbvuuktLly69rm9YK2whcjV/vRl7npycHNO+9e1KxzGucRPw4hQUFKQOHTpc8fGrvW9Wy8nJ0d13361Tp05p5MiRioqKUrly5fTnn3+qf//+hT5Tr6CK6/d1165dkuT881YUrzc3N1fBwcH68ssvL/t43j3IbDab5s2bp/Xr1+t///uflixZooEDB+q9997T+vXrnWdxAQDg7iilAABwE3k3TY6Jibnqdh4eHmrfvr3at2+v8ePH64033tA//vEPrVy5Uh06dLhi0VFYBw4cyLdsGIYOHjyo6Oho57qKFSvqzJkzlzz3999/z3dmT0Gy1ahRQ8uXL1dKSkq+s1n27t3rfLwo1KhRQzt27FBubm6+s6WK+jiXk3fWz1/fuyudnZWbm6vffvvNeXaUJO3fv1+SLvnmwqvJu8xx165dVyxBd+7cqf3792v27Nnq27evc/3F31aX53p/XytXrixfX1/t27fvksf27t0rDw8PhYWFXde+btRf/7wVxeutWbOmli9frjvvvPO6yt/bb79dt99+u15//XXNmTNHjzzyiL7++ms99thjhXlJAAC4HC7fAwDADfz444967bXXFBkZqUceeeSK2506deqSdY0bN5Yk56U/5cqVk3Rp0VFYn332Wb777sybN0+JiYnq3Lmzc13NmjW1fv16nT9/3rluwYIFl1yKVZBsXbp0UU5Ojj788MN8699//33ZbLZ8x78RXbp00bFjx/J9m1t2drY++OAD+fn5OS/fKg41atRQmTJltGbNmnzrp0yZcsXnXPx+GIahDz/8UF5eXmrfvv11H7djx47y9/fXuHHjdO7cuXyP5Z2BlHeG0sVnJBmGoYkTJ16yv+v9fS1Tpow6duyo7777Lt/lhsePH9ecOXPUsmVLBQQEXPfrKKw5c+bok08+UYsWLZzvW1G83r/97W/KycnRa6+9dslzsrOzndufPn36kjO9/vrnGACAkoAzpQAAcDGLFi3S3r17lZ2drePHj+vHH3/UsmXLVKNGDX3//feX3Hj6YmPGjNGaNWt0zz33qEaNGkpKStKUKVNUvXp1tWzZUtKFgqhChQr66KOP5O/vr3Llyql58+aKjIwsVN7AwEC1bNlSAwYM0PHjxzVhwgTVqlVLjz/+uHObxx57TPPmzVOnTp30t7/9TYcOHdIXX3yR78bjBc123333qV27dvrHP/6h+Ph4NWrUSEuXLtV3332nYcOGXbLvwnriiSc0bdo09e/fX1u2bFFERITmzZuntWvXasKECVe9x9eNKl++vB588EF98MEHstlsqlmzphYsWOC899BflS1bVosXL1a/fv3UvHlzLVq0SAsXLtTLL7/svDTsegQEBOj999/XY489pmbNmql3796qWLGitm/frvT0dM2ePVtRUVGqWbOmXnjhBf35558KCAjQf//738vey6lp06aSpGeffVYxMTEqU6aMHn744csee+zYsVq2bJlatmypp59+Wp6enpo2bZoyMzP19ttvX/druF7z5s2Tn5+fzp8/rz///FNLlizR2rVrnTeez1MUr7dNmzYaPHiwxo0bp23btqljx47y8vLSgQMHNHfuXE2cOFE9e/bU7NmzNWXKFD3wwAOqWbOmUlJS9PHHHysgIEBdunQp8vcAAADLWPKdfwAA4BJ5X3Gf9+Pt7W2EhIQYd999tzFx4kQjOTn5kufkfa19nhUrVhhdu3Y1qlatanh7extVq1Y1evXqZezfvz/f87777jujXr16hqenpyHJmDlzpmEYhtGmTRujfv36l83Xpk0bo02bNs7llStXGpKMr776yoiNjTWCg4MNHx8f45577jF+//33S57/3nvvGdWqVTPsdrtx5513Gps3b75kn1fL1q9fP6NGjRr5tk1JSTGGDx9uVK1a1fDy8jJq165tvPPOO0Zubm6+7SQZQ4YMuSRTjRo1jH79+l329V7s+PHjxoABA4ygoCDD29vbaNiwoTPXX/d3zz33XHN/Bdn2xIkTRo8ePQxfX1+jYsWKxuDBg41du3ble28M48L7U65cOePQoUNGx44dDV9fX6NKlSrGqFGjjJycnHz7lGSMGjXKuZw3e4cPH8633ffff2/ccccdho+PjxEQEGDcdtttxldffeV8fM+ePUaHDh0MPz8/IygoyHj88ceN7du3X5ItOzvbGDp0qFG5cmXDZrPlm9m/ZjEMw/j111+NmJgYw8/Pz/D19TXatWtn/PLLL/m2ycu8adOmfOvz5nLlypVXfV/z/uzk/ZQtW9aoXr26ce+99xozZswwzp07d8lziuL1GoZhTJ8+3WjatKnh4+Nj+Pv7Gw0bNjRefPFF4+jRo87X36tXLyM8PNyw2+1GcHCwce+99xqbN2++6msCAMDd2AzDwrt7AgAAAAAAoFTinlIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATOdpdYDilpubq6NHj8rf3182m83qOAAAAAAAACWaYRhKSUlR1apV5eFx5fOhSnwpdfToUYWFhVkdAwAAAAAAoFQ5cuSIqlevfsXHS3wp5e/vL+nCGxEQEGBxGgAAAAAAgJItOTlZYWFhzk7mSkp8KZV3yV5AQAClFAAAAAAAgEmudRslbnQOAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABM5zKl1JtvvimbzaZhw4Y51507d05DhgxRpUqV5Ofnpx49euj48ePWhQQAAAAAAECRcIlSatOmTZo2bZqio6PzrR8+fLj+97//ae7cuVq9erWOHj2q7t27W5QSAAAAAAAARcXyUio1NVWPPPKIPv74Y1WsWNG5/uzZs/r00081fvx43XXXXWratKlmzpypX375RevXr7cwMQAAAAAAAG6U5aXUkCFDdM8996hDhw751m/ZskVZWVn51kdFRSk8PFzr1q274v4yMzOVnJyc7wcAAAAAAACuxdPKg3/99df69ddftWnTpkseO3bsmLy9vVWhQoV866tUqaJjx45dcZ/jxo3T6NGjizoqAAAAAAAAipBlZ0odOXJEzz33nL788kuVLVu2yPYbGxurs2fPOn+OHDlSZPsGAAAAAABA0bCslNqyZYuSkpJ0yy23yNPTU56enlq9erUmTZokT09PValSRefPn9eZM2fyPe/48eMKCQm54n7tdrsCAgLy/QAAAAAAAMC1WHb5Xvv27bVz58586wYMGKCoqCiNHDlSYWFh8vLy0ooVK9SjRw9J0r59+5SQkKAWLVpYERkAAAAAAABFxLJSyt/fXw0aNMi3rly5cqpUqZJz/aBBgzRixAgFBgYqICBAQ4cOVYsWLXT77bdbERkAAAAAAABFxNIbnV/L+++/Lw8PD/Xo0UOZmZmKiYnRlClTrI4FAAAAAACAG2QzDMOwOkRxSk5OVvny5XX27FnuLwUAAAAAAFDMrreLsexG5wAAAAAAACi9KKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKZz6W/fAwAAgPUSEhLkcDisjiFJCgoKUnh4uNUxAABAEaCUAgAAwBUlJCQoKqquMjLSrY4iSfLx8dXevXEUUwAAlACUUgAAALgih8OhjIx0NR84SgGhEZZmSU6M14YZo+VwOCilAAAoASilAAAAcE0BoREKDK9jdQwAAFCCcKNzAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpKKUAAAAAAABgOkopAAAAAAAAmI5SCgAAAAAAAKaztJSaOnWqoqOjFRAQoICAALVo0UKLFi1yPt62bVvZbLZ8P08++aSFiQEAAAAAAFAUPK08ePXq1fXmm2+qdu3aMgxDs2fPVteuXbV161bVr19fkvT4449rzJgxzuf4+vpaFRcAAAAAAABFxNJS6r777su3/Prrr2vq1Klav369s5Ty9fVVSEiIFfEAAAAAAABQTFzmnlI5OTn6+uuvlZaWphYtWjjXf/nllwoKClKDBg0UGxur9PT0q+4nMzNTycnJ+X4AAAAAAADgWiw9U0qSdu7cqRYtWujcuXPy8/PTt99+q3r16kmSevfurRo1aqhq1arasWOHRo4cqX379umbb7654v7GjRun0aNHmxUfAAAAAAAAhWB5KVWnTh1t27ZNZ8+e1bx589SvXz+tXr1a9erV0xNPPOHcrmHDhgoNDVX79u116NAh1axZ87L7i42N1YgRI5zLycnJCgsLK/bXAQAAAAAAgOtneSnl7e2tWrVqSZKaNm2qTZs2aeLEiZo2bdol2zZv3lySdPDgwSuWUna7XXa7vfgCAwAAAAAA4Ia5zD2l8uTm5iozM/Oyj23btk2SFBoaamIiAAAAAAAAFDVLz5SKjY1V586dFR4erpSUFM2ZM0erVq3SkiVLdOjQIc2ZM0ddunRRpUqVtGPHDg0fPlytW7dWdHS0lbEBAAAAAABwgywtpZKSktS3b18lJiaqfPnyio6O1pIlS3T33XfryJEjWr58uSZMmKC0tDSFhYWpR48e+uc//2llZAAAAAAAABQBS0upTz/99IqPhYWFafXq1SamAQAAAAAAgFlc7p5SAAAAAAAAKPkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYztPqAAAAcyQkJMjhcFgdQ0FBQQoPD7c6BgAAAACLUUoBQCmQkJCgqKi6yshItzqKfHx8tXdvHMUUAAAAUMpRSgFAKeBwOJSRka7mA0cpIDTCshzJifHaMGO0HA4HpRQAAABQylFKAUApEhAaocDwOlbHAAAAAABudA4AAAAAAADzUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMJ2lpdTUqVMVHR2tgIAABQQEqEWLFlq0aJHz8XPnzmnIkCGqVKmS/Pz81KNHDx0/ftzCxAAAAAAAACgKlpZS1atX15tvvqktW7Zo8+bNuuuuu9S1a1ft3r1bkjR8+HD973//09y5c7V69WodPXpU3bt3tzIyAAAAAAAAioCnlQe/77778i2//vrrmjp1qtavX6/q1avr008/1Zw5c3TXXXdJkmbOnKm6detq/fr1uv32262IDAAAAAAAgCJgaSl1sZycHM2dO1dpaWlq0aKFtmzZoqysLHXo0MG5TVRUlMLDw7Vu3borllKZmZnKzMx0LicnJxd7dgAAAAAA4L4SEhLkcDisjqGgoCCFh4dbHcM0lpdSO3fuVIsWLXTu3Dn5+fnp22+/Vb169bRt2zZ5e3urQoUK+bavUqWKjh07dsX9jRs3TqNHjy7m1AAAAAAAoCRISEhQVFRdZWSkWx1FPj6+2rs3rtQUU5aXUnXq1NG2bdt09uxZzZs3T/369dPq1asLvb/Y2FiNGDHCuZycnKywsLCiiAoAAAAAAEoYh8OhjIx0NR84SgGhEZblSE6M14YZo+VwOCilzOLt7a1atWpJkpo2bapNmzZp4sSJeuihh3T+/HmdOXMm39lSx48fV0hIyBX3Z7fbZbfbizs2AAAAAAAoQQJCIxQYXsfqGKWKpd++dzm5ubnKzMxU06ZN5eXlpRUrVjgf27dvnxISEtSiRQsLEwIAAAAAAOBGWXqmVGxsrDp37qzw8HClpKRozpw5WrVqlZYsWaLy5ctr0KBBGjFihAIDAxUQEKChQ4eqRYsWfPMeAAAAAACAm7O0lEpKSlLfvn2VmJio8uXLKzo6WkuWLNHdd98tSXr//ffl4eGhHj16KDMzUzExMZoyZYqVkQEAAAAAAFAELC2lPv3006s+XrZsWU2ePFmTJ082KREAAAAAAADM4HL3lAIAAAAAAEDJRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSeVgcAbkRCQoIcDofVMRQUFKTw8HCrYwAAAAAA4DYopeC2EhISFBVVVxkZ6VZHkY+Pr/bujaOYAgAAAADgOlFKwW05HA5lZKSr+cBRCgiNsCxHcmK8NswYLYfDQSkFAAAAAMB1opSC2wsIjVBgeB2rYwAAAAAAgALgRucAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANN5Wh0AQMmTkJAgh8NhdQwFBQUpPDzc6hgAAKCU4bMQAFwfSikARSohIUFRUXWVkZFudRT5+Phq7944PowBAADT8FkIAK4fpRSAIuVwOJSRka7mA0cpIDTCshzJifHaMGO0HA4HH8QAAIBp+CwEANePUgpAsQgIjVBgeB2rYwAAAFiCz0IAcG3c6BwAAAAAAACmo5QCAAAAAACA6SilAAAAAAAAYDpKKQAAAAAAAJjO0lJq3Lhxatasmfz9/RUcHKxu3bpp3759+bZp27atbDZbvp8nn3zSosQAAAAAAAAoCpaWUqtXr9aQIUO0fv16LVu2TFlZWerYsaPS0tLybff4448rMTHR+fP2229blBgAAAAAAABFwdPKgy9evDjf8qxZsxQcHKwtW7aodevWzvW+vr4KCQkxOx4AAAAAAACKiUvdU+rs2bOSpMDAwHzrv/zySwUFBalBgwaKjY1Venq6FfEAAAAAAABQRCw9U+piubm5GjZsmO688041aNDAub53796qUaOGqlatqh07dmjkyJHat2+fvvnmm8vuJzMzU5mZmc7l5OTkYs8OACiYuLg4qyMoKChI4eHhVscAAAAASi2XKaWGDBmiXbt26eeff863/oknnnD+umHDhgoNDVX79u116NAh1axZ85L9jBs3TqNHjy72vACAgss4e1KSTX369LE6inx8fLV3bxzFFAAAAGARlyilnnnmGS1YsEBr1qxR9erVr7pt8+bNJUkHDx68bCkVGxurESNGOJeTk5MVFhZWtIEBAIWSlZ4iyVDj3iNVOTLKshzJifHaMGO0HA4HpRQAAABgEUtLKcMwNHToUH377bdatWqVIiMjr/mcbdu2SZJCQ0Mv+7jdbpfdbi/KmACAIuYXHK7A8DpWxwAAAABgIUtLqSFDhmjOnDn67rvv5O/vr2PHjkmSypcvLx8fHx06dEhz5sxRly5dVKlSJe3YsUPDhw9X69atFR0dbWV0AAAAAAAA3ABLS6mpU6dKktq2bZtv/cyZM9W/f395e3tr+fLlmjBhgtLS0hQWFqYePXron//8pwVpAQAAAAAAUFQsv3zvasLCwrR69WqT0gAAAAAAAMAsHlYHAAAAAAAAQOlDKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMB2lFAAAAAAAAExHKQUAAAAAAADTUUoBAAAAAADAdJRSAAAAAAAAMF2hSqnffvutqHMAAAAAAACgFClUKVWrVi21a9dOX3zxhc6dO1fUmQAAAAAAAFDCFaqU+vXXXxUdHa0RI0YoJCREgwcP1saNG4s6GwAAAAAAAEqoQpVSjRs31sSJE3X06FHNmDFDiYmJatmypRo0aKDx48frxIkTRZ0TAAAAAAAAJcgN3ejc09NT3bt319y5c/XWW2/p4MGDeuGFFxQWFqa+ffsqMTGxqHICAAAAAACgBLmhUmrz5s16+umnFRoaqvHjx+uFF17QoUOHtGzZMh09elRdu3YtqpwAAAAAAAAoQTwL86Tx48dr5syZ2rdvn7p06aLPPvtMXbp0kYfHhY4rMjJSs2bNUkRERFFmBQAAAAAAQAlRqFJq6tSpGjhwoPr376/Q0NDLbhMcHKxPP/30hsIBAAAAAACgZCpUKXXgwIFrbuPt7a1+/foVZvcAAAAAAAAo4Qp1T6mZM2dq7ty5l6yfO3euZs+efcOhAAAAAAAAULIVqpQaN26cgoKCLlkfHBysN95444ZDAQAAAAAAoGQrVCmVkJCgyMjIS9bXqFFDCQkJNxwKAAAAAAAAJVuhSqng4GDt2LHjkvXbt29XpUqVbjgUAAAAAAAASrZClVK9evXSs88+q5UrVyonJ0c5OTn68ccf9dxzz+nhhx8u6owAAAAAAAAoYQr17Xuvvfaa4uPj1b59e3l6XthFbm6u+vbtyz2lAAAAAAAAcE2FKqW8vb3173//W6+99pq2b98uHx8fNWzYUDVq1CjqfAAAAAAAlBgJCQlyOBxWx1BQUJDCw8OtjoFSrlClVJ6bb75ZN998c1FlAQAAAACgxEpISFBUVF1lZKRbHUU+Pr7auzeOYgqWKlQplZOTo1mzZmnFihVKSkpSbm5uvsd//PHHIgkHAAAAAEBJ4XA4lJGRruYDRykgNMKyHMmJ8dowY7QcDgelFCxVqFLqueee06xZs3TPPfeoQYMGstlsRZ0LAAAAAIASKSA0QoHhdayOAViuUKXU119/rf/85z/q0qVLUecBAAAAAABAKeBRmCd5e3urVq1aRZ0FAAAAAAAApUShSqnnn39eEydOlGEYRZ0HAAAAAAAApUChLt/7+eeftXLlSi1atEj169eXl5dXvse/+eabIgkHAAAAAACAkqlQpVSFChX0wAMPFHUWAAAAAAAAlBKFKqVmzpxZ1DkAAAAAAABQihTqnlKSlJ2dreXLl2vatGlKSUmRJB09elSpqalFFg4AAAAAAAAlU6HOlPr999/VqVMnJSQkKDMzU3fffbf8/f311ltvKTMzUx999FFR5wQAAADgohISEuRwOKyOoaCgIIWHh1sdAwBwnQpVSj333HO69dZbtX37dlWqVMm5/oEHHtDjjz9eZOEAAAAAuLaEhARFRdVVRka61VHk4+OrvXvjKKYAwE0UqpT66aef9Msvv8jb2zvf+oiICP35559FEgwAAACA63M4HMrISFfzgaMUEBphWY7kxHhtmDFaDoeDUgoA3EShSqnc3Fzl5ORcsv6PP/6Qv7//DYcCAAAA4F4CQiMUGF7H6hgAADdSqBudd+zYURMmTHAu22w2paamatSoUerSpUtRZQMAAAAAAEAJVagzpd577z3FxMSoXr16OnfunHr37q0DBw4oKChIX331VVFnBAAAAAAAQAlTqFKqevXq2r59u77++mvt2LFDqampGjRokB555BH5+PgUdUYAAAAAAACUMIUqpSTJ09NTffr0KcosAAAAAAAAKCUKVUp99tlnV328b9++17WfcePG6ZtvvtHevXvl4+OjO+64Q2+99Zbq1Pn/GySeO3dOzz//vL7++mtlZmYqJiZGU6ZMUZUqVQoTHQAAAAAAAC6gUKXUc889l285KytL6enp8vb2lq+v73WXUqtXr9aQIUPUrFkzZWdn6+WXX1bHjh21Z88elStXTpI0fPhwLVy4UHPnzlX58uX1zDPPqHv37lq7dm1hogMAAAAAAMAFFKqUOn369CXrDhw4oKeeekp///vfr3s/ixcvzrc8a9YsBQcHa8uWLWrdurXOnj2rTz/9VHPmzNFdd90lSZo5c6bq1q2r9evX6/bbby9MfAAAAAAAAFjMo6h2VLt2bb355puXnEVVEGfPnpUkBQYGSpK2bNmirKwsdejQwblNVFSUwsPDtW7duhsLDAAAAAAAAMsU+kbnl92Zp6eOHj1aqOfm5uZq2LBhuvPOO9WgQQNJ0rFjx+Tt7a0KFSrk27ZKlSo6duzYZfeTmZmpzMxM53JycnKh8gAAAAAAgOKVkJAgh8NhaYa4uDhLj1+aFaqU+v777/MtG4ahxMREffjhh7rzzjsLFWTIkCHatWuXfv7550I9P8+4ceM0evToG9oHAAAAAAAoXgkJCYqKqquMjHSro0iSsjLPWx2h1ClUKdWtW7d8yzabTZUrV9Zdd92l9957r8D7e+aZZ7RgwQKtWbNG1atXd64PCQnR+fPndebMmXxnSx0/flwhISGX3VdsbKxGjBjhXE5OTlZYWFiBMwEAAAAAgOLjcDiUkZGu5gNHKSA0wrIciTvXadf305WdnW1ZhtKqUKVUbm5ukRzcMAwNHTpU3377rVatWqXIyMh8jzdt2lReXl5asWKFevToIUnat2+fEhIS1KJFi8vu0263y263F0k+AAAAAABQvAJCIxQYXsey4ycnxlt27NKuSO8pVVBDhgzRnDlz9N1338nf3995n6jy5cvLx8dH5cuX16BBgzRixAgFBgYqICBAQ4cOVYsWLfjmPQAAAAAAADdWqFLq4svjrmX8+PFXfGzq1KmSpLZt2+ZbP3PmTPXv31+S9P7778vDw0M9evRQZmamYmJiNGXKlAJnBgAAAAAAgOsoVCm1detWbd26VVlZWapT58Ipdvv371eZMmV0yy23OLez2WxX3Y9hGNc8VtmyZTV58mRNnjy5MFEBAAAAAADgggpVSt13333y9/fX7NmzVbFiRUnS6dOnNWDAALVq1UrPP/98kYYEAAAAAABAyeJRmCe99957GjdunLOQkqSKFStq7Nixhfr2PQAAAAAAAJQuhSqlkpOTdeLEiUvWnzhxQikpKTccCgAAAAAAACVboUqpBx54QAMGDNA333yjP/74Q3/88Yf++9//atCgQerevXtRZwQAAAAAAEAJU6h7Sn300Ud64YUX1Lt3b2VlZV3YkaenBg0apHfeeadIAwIAAAAA3FdCQoIcDofVMRQUFKTw8HCrYwC4SKFKKV9fX02ZMkXvvPOODh06JEmqWbOmypUrV6ThAAAAAADuKyEhQVFRdZWRkW51FPn4+Grv3jiKKcCFFKqUypOYmKjExES1bt1aPj4+MgxDNputqLIBAAAAANyYw+FQRka6mg8cpYDQCMtyJCfGa8OM0XI4HJRSgAspVCl18uRJ/e1vf9PKlStls9l04MAB3XTTTRo0aJAqVqzIN/ABAAAAAJwCQiMUGF7H6hgAXEyhbnQ+fPhweXl5KSEhQb6+vs71Dz30kBYvXlxk4QAAAAAAAFAyFepMqaVLl2rJkiWqXr16vvW1a9fW77//XiTBAAAAAAAAUHIV6kyptLS0fGdI5Tl16pTsdvsNhwIAAAAAAEDJVqhSqlWrVvrss8+cyzabTbm5uXr77bfVrl27IgsHAAAAAACAkqlQl++9/fbbat++vTZv3qzz58/rxRdf1O7du3Xq1CmtXbu2qDMCAAAAAACghCnUmVINGjTQ/v371bJlS3Xt2lVpaWnq3r27tm7dqpo1axZ1RgAAAAAAAJQwBT5TKisrS506ddJHH32kf/zjH8WRCQAAAAAAACVcgUspLy8v7dixoziyAG4tLi7O6ggKCgpSeHi41TEAAAAAALimQt1Tqk+fPvr000/15ptvFnUewO1knD0pyaY+ffpYHUU+Pr7auzeOYgoAAAAA4PIKVUplZ2drxowZWr58uZo2bapy5crle3z8+PFFEg5wB1npKZIMNe49UpUjoyzLkZwYrw0zRsvhcFBKAQAAAABcXoFKqd9++00RERHatWuXbrnlFknS/v37821js9mKLh3gRvyCwxUYXsfqGAAAAAAAuIUClVK1a9dWYmKiVq5cKUl66KGHNGnSJFWpUqVYwgEAAAAAAKBk8ijIxoZh5FtetGiR0tLSijQQAAAAAAAASr4ClVJ/9deSCgAAAAAAALgeBSqlbDbbJfeM4h5SAAAAAAAAKKgC3VPKMAz1799fdrtdknTu3Dk9+eSTl3z73jfffFN0CQEAAAAAAFDiFKiU6tevX77lPn36FGkYAAAAAAAAlA4FKqVmzpxZXDkAAAAAAABQitzQjc4BAAAAAACAwijQmVIA4G7i4uKsjqCgoCCFh4dbHQMAAADIx+rPylYfH9ajlAJQImWcPSnJ5hL3vvPx8dXevXEUUwAAAHAJrvRZWZKyMs9bHQEWoZQCUCJlpadIMtS490hVjoyyLEdyYrw2zBgth8NBKQUAAACX4CqflRN3rtOu76crOzvbsgywFqUUgBLNLzhcgeF1rI4BAAAAuByrPysnJ8Zbdmy4Bm50DgAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwnaWl1Jo1a3TfffepatWqstlsmj9/fr7H+/fvL5vNlu+nU6dO1oQFAAAAAABAkbG0lEpLS1OjRo00efLkK27TqVMnJSYmOn+++uorExMCAAAAAACgOHhaefDOnTurc+fOV93GbrcrJCTEpEQAAAAAAAAwg8vfU2rVqlUKDg5WnTp19NRTT+nkyZNWRwIAAAAAAMANsvRMqWvp1KmTunfvrsjISB06dEgvv/yyOnfurHXr1qlMmTKXfU5mZqYyMzOdy8nJyWbFBVxCXFxcqT4+AAAAAMA9uHQp9fDDDzt/3bBhQ0VHR6tmzZpatWqV2rdvf9nnjBs3TqNHjzYrIuAyMs6elGRTnz59rI4iScrKPG91BAAAAACAC3PpUuqvbrrpJgUFBengwYNXLKViY2M1YsQI53JycrLCwsLMighYJis9RZKhxr1HqnJklGU5Eneu067vpys7O9uyDAAAAAAA1+dWpdQff/yhkydPKjQ09Irb2O122e12E1MBrsUvOFyB4XUsO35yYrxlxwYAAAAAuA9LS6nU1FQdPHjQuXz48GFt27ZNgYGBCgwM1OjRo9WjRw+FhITo0KFDevHFF1WrVi3FxMRYmBoAAAAAAAA3ytJSavPmzWrXrp1zOe+yu379+mnq1KnasWOHZs+erTNnzqhq1arq2LGjXnvtNc6EAgAAAAAAcHOWllJt27aVYRhXfHzJkiUmpgEAAAAAAIBZPKwOAAAAAAAAgNKHUgoAAAAAAACmo5QCAAAAAACA6SilAAAAAAAAYDpLb3QOAKVFXFxcqT4+cL0SEhLkcDisjqGgoCCFh4dbHQMAbpjVnwGsPj4A10YpBQDFKOPsSUk29enTx+ookqSszPNWRwCuKCEhQVFRdZWRkW51FPn4+Grv3jiKKQBui88gANwBpRQAFKOs9BRJhhr3HqnKkVGW5UjcuU67vp+u7OxsyzIA1+JwOJSRka7mA0cpIDTCshzJifHaMGO0HA4HpRQAt8VnEADugFIKAEzgFxyuwPA6lh0/OTHesmMDBRUQGmHpnxcAKEn4DALAlXGjcwAAAAAAAJiOUgoAAAAAAACmo5QCAAAAAACA6SilAAAAAAAAYDpKKQAAAAAAAJiOUgoAAAAAAACmo5QCAAAAAACA6SilAAAAAAAAYDpPqwMAAFCaJSQkyOFwWB1DQUFBCg8PtzoGAAAAShFKKQAALJKQkKCoqLrKyEi3Oop8fHy1d28cxRQAAABMQykFAIBFHA6HMjLS1XzgKAWERliWIzkxXhtmjJbD4aCUAgAAgGkopQAAsFhAaIQCw+tYHQMAAAAwFTc6BwAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYztPqAAAAAEBBxMXFWR1BQUFBCg8PtzoGAABujVIKAAAAbiHj7ElJNvXp08fqKPLx8dXevXEUUwAA3ABKKQAAALiFrPQUSYYa9x6pypFRluVITozXhhmj5XA4KKUAALgBlFIAAABwK37B4QoMr2N1DAAAcIO40TkAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSeVgdAwSQkJMjhcFgdQ0FBQQoPD7c6BgAAQKnmCp8N4+LiLD0+AMB9UUq5kYSEBEVF1VVGRrrVUeTj46u9e+MopgAAACziSp8NJSkr87zVEQAAboZSyo04HA5lZKSr+cBRCgiNsCxHcmK8NswYLYfDQSkFAABgEVf5bJi4c512fT9d2dnZlmUAALgnSik3FBAaocDwOlbHAAAAgAuw+rNhcmK8ZccGALg3bnQOAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMZ2kptWbNGt13332qWrWqbDab5s+fn+9xwzD0yiuvKDQ0VD4+PurQoYMOHDhgTVgAAAAAAAAUGUtLqbS0NDVq1EiTJ0++7ONvv/22Jk2apI8++kgbNmxQuXLlFBMTo3PnzpmcFAAAAAAAAEXJ08qDd+7cWZ07d77sY4ZhaMKECfrnP/+prl27SpI+++wzValSRfPnz9fDDz9sZlQAAAAAAAAUIZe9p9Thw4d17NgxdejQwbmufPnyat68udatW2dhMgAAAAAAANwoS8+Uuppjx45JkqpUqZJvfZUqVZyPXU5mZqYyMzOdy8nJycUTEIqLiyvVxwcAAAAAAIXnsqVUYY0bN06jR4+2OkaJlnH2pCSb+vTpY3UUSVJW5nmrIwAAAAAAgAJy2VIqJCREknT8+HGFhoY61x8/flyNGze+4vNiY2M1YsQI53JycrLCwsKKLWdplJWeIslQ494jVTkyyrIciTvXadf305WdnW1ZBgAAAAAAUDguW0pFRkYqJCREK1ascJZQycnJ2rBhg5566qkrPs9ut8tut5uUsnTzCw5XYHgdy46fnBhv2bEBAAAAAMCNsbSUSk1N1cGDB53Lhw8f1rZt2xQYGKjw8HANGzZMY8eOVe3atRUZGal//etfqlq1qrp162ZdaAAAAAAAANwwS0upzZs3q127ds7lvMvu+vXrp1mzZunFF19UWlqannjiCZ05c0YtW7bU4sWLVbZsWasiAwAAAAAAoAhYWkq1bdtWhmFc8XGbzaYxY8ZozJgxJqYCAAAAAABAcfOwOgAAAAAAAABKH0opAAAAAAAAmI5SCgAAAAAAAKajlAIAAAAAAIDpLL3ROQAAVoqLiyvVx/8rq/NYfXwAAACYi1IKAFDqZJw9KcmmPn36WB1FkpSVed7S4/N+AAAAwAqUUgCAUicrPUWSoca9R6pyZJRlORJ3rtOu76crOzvbsgwS7wcAAACsQSkFACi1/ILDFRhex7LjJyfGW3bsy+H9AAAAgJm40TkAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADCdp9UBAAAAAKCoxMXFlerj4+qs/v2x+viAq6GUAgAAAOD2Ms6elGRTnz59rI4iScrKPG91BFyE+QBcE6UUAAAAALeXlZ4iyVDj3iNVOTLKshyJO9dp1/fTlZ2dbVkGXIr5AFwTpRQAAACAEsMvOFyB4XUsO35yYrxlx8a1MR+Aa+FG5wAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA03laHQAAAABwR3FxcaX6+AAA3ChKKQAAAKAAMs6elGRTnz59rI4iScrKPG91BAAACoVSCgAAACiArPQUSYYa9x6pypFRluVI3LlOu76fruzsbMsyAABwIyilAAAAgELwCw5XYHgdy46fnBhv2bEBACgK3OgcAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6ly6lXn31Vdlstnw/UVHW3UwSAAAAAAAARcPlb3Rev359LV++3Lns6enykQEAAAAAAHANLt/weHp6KiQkxOoYAAAAAAAAKEIuffmeJB04cEBVq1bVTTfdpEceeUQJCQlWRwIAAAAAAMANcukzpZo3b65Zs2apTp06SkxM1OjRo9WqVSvt2rVL/v7+l31OZmamMjMzncvJyclmxQUAAAAAAMB1culSqnPnzs5fR0dHq3nz5qpRo4b+85//aNCgQZd9zrhx4zR69GizIgIAAAAAAKAQXP7yvYtVqFBBN998sw4ePHjFbWJjY3X27Fnnz5EjR0xMCAAAAAAAgOvhVqVUamqqDh06pNDQ0CtuY7fbFRAQkO8HAAAAAAAArsWlS6kXXnhBq1evVnx8vH755Rc98MADKlOmjHr16mV1NAAAAAAAANwAl76n1B9//KFevXrp5MmTqly5slq2bKn169ercuXKVkcDAAAAAADADXDpUurrr7+2OgIAAAAAAACKgUtfvgcAAAAAAICSiVIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6l77ROQAAgFXi4uKsjqCgoCCFh4dbHQMAAKBYUEoBAABcJOPsSUk29enTx+oo8vHx1d69cRRTAACgRKKUAgAAuEhWeookQ417j1TlyCjLciQnxmvDjNFyOByUUgAAoESilAIAALgMv+BwBYbXsToGAABAicWNzgEAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApvO0OgAAAACuLC4urlQfHwAAlFyUUgAAAC4o4+xJSTb16dPH6iiSpKzM81ZHAAAAJQylFAAAgAvKSk+RZKhx75GqHBllWY7Eneu06/vpys7OtiwDAAAomSilAAAAXJhfcLgCw+tYdvzkxHjLjg0AAEo2bnQOAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAQAAAAAAwHSUUgAAAAAAADAdpRQAAAAAAABM5xal1OTJkxUREaGyZcuqefPm2rhxo9WRAAAAAAAAcANcvpT697//rREjRmjUqFH69ddf1ahRI8XExCgpKcnqaAAAAAAAACgkly+lxo8fr8cff1wDBgxQvXr19NFHH8nX11czZsywOhoAAAAAAAAKydPqAFdz/vx5bdmyRbGxsc51Hh4e6tChg9atW3fZ52RmZiozM9O5fPbsWUlScnJy8YY1QWpqqiTp1O/7lJ2ZYVmO5MTfJUln/zwgL08bOchBDnKQgxzkIEepykIOcpCDHOQgR7HkOJYg6cK//d29w8jLbxjGVbezGdfawkJHjx5VtWrV9Msvv6hFixbO9S+++KJWr16tDRs2XPKcV199VaNHjzYzJgAAAAAAAP7iyJEjql69+hUfd+kzpQojNjZWI0aMcC7n5ubq1KlTqlSpkmy2om08k5OTFRYWpiNHjiggIKBI9w3cCGYT7oaZhbthZuHKmE+4G2YWrorZLDzDMJSSkqKqVatedTuXLqWCgoJUpkwZHT9+PN/648ePKyQk5LLPsdvtstvt+dZVqFChuCJKkgICAhhQuCRmE+6GmYW7YWbhyphPuBtmFq6K2Syc8uXLX3Mbl77Rube3t5o2baoVK1Y41+Xm5mrFihX5LucDAAAAAACAe3HpM6UkacSIEerXr59uvfVW3XbbbZowYYLS0tI0YMAAq6MBAAAAAACgkFy+lHrooYd04sQJvfLKKzp27JgaN26sxYsXq0qVKlZHk91u16hRoy65XBCwGrMJd8PMwt0ws3BlzCfcDTMLV8VsFj+X/vY9AAAAAAAAlEwufU8pAAAAAAAAlEyUUgAAAAAAADAdpRQAAAAAAABMRykFAAAAAAAA01FKAbhEbm6u1REAAAAAACUcpZRFEhIStGPHDqtjAJfYu3evJk6caHUM4Lrl5OQoKyvL6hgAAMACfJk84N5sBn+KTbdjxw517dpV9957r0aPHq3AwECrIwGSpJ07d6pZs2Y6f/681q1bp+bNm1sdCbiqffv2acKECTp06JDuvPNODR06lL9T4dLi4+O1bNkyZWRkqHbt2urcubPVkQBJ0qFDhzRv3jwlJyerUaNGuueee1SuXDmrYwFXdOrUKed/8w3DkM1mszgR8P+OHDmiH3/8UadPn1Z0dLTuuusuqyO5LM6UMtnBgwfVoUMH9ezZU++++y7/eILL2L59u2677TY99NBDatOmjRYsWCCJS/ngunbt2qWWLVvq1KlTql27tl5//XVNnz7d6ljAFe3cuVPNmzfXV199pW+//Vb33nuv+vbtq40bN1odDaXcrl27dOutt+qHH37QmjVr1Lt3bw0YMEDLli2zOhpwWXv27FGVKlU0bNgwSZLNZuOMKbiMnTt3qlWrVpo+fbqmT5+uTp06ac6cOVbHclmcKWWyCRMmaNOmTfryyy+VnZ2tTz75RPHx8apRo4bat2+vm2++2eqIKIW2bt2qNm3a6Nlnn9XYsWP14osvatasWTpw4IDKly/P/32Cyzlz5ow6d+6sdu3a6Y033pAkjRo1SqmpqXrrrbfk6elpcUIgv5MnT6p9+/a69957NXbsWEnSokWLdO+99+qee+7R8OHD1a5dO4tTojTKyMhQz549ddNNN+mDDz6QJG3cuFFPP/20AgMDNWTIEHXt2tXilMD/O3r0qB544AFlZ2dr3759evzxx/X+++9L4owpWO/w4cNq166dHn74Yb366qtKSUnRhx9+qAULFuiHH35QcHAwM/oXnCllsh07dshut0uS7rrrLs2YMUObN2/Wyy+/rGHDhmnRokUWJ0Rpk5SUpDvvvFODBw92/kMp7xKovHtL8RcnXE1GRoYyMjLUunVr57ojR45o48aNat68uZ566in+PoVLOXPmjDw9PdW7d28ZhqHz58+rcePGqlu3rjZt2qQPP/xQp0+ftjomSiEfHx+dPn1awcHBki6cIX3bbbdp9uzZyszM1LRp07gPKlyGYRhauXKlatSooQ8++EAff/yxpk6dqhEjRkjijClYKzs7WzNmzFCTJk00atQolS1bVpUrV9Ydd9yhxMRESfy76nIopUyS95djWFiYvLy8NH/+fJUtW1YLFy7U8uXLtXHjRqWkpGjGjBkWJ0Vp4+XlpcWLF+udd95xrqtSpYqaNGmipUuXOtfxH3i4kvPnz+vAgQNau3atduzYobFjx+rrr7/W3Xffrf79+2vLli2aPHmyjh07ZnVUQJKUkpKiX3/9VceOHZPNZpO3t7fS09MVFham9957T99++63mzZtndUyUMoZhKDU1Vd7e3kpKSpJ0oZTKyclR/fr19eGHH2r79u2aPXu2xUmBC2w2m1q3bq0+ffrojjvuUK9evTRjxgxNmTJFw4cPd27D51ZYwdPTU9HR0WrWrJl8fHyc65s3by5PT085HA4L07kwA6ZavHixYbPZjFatWhmPPfZYvsc2bNhg2Gw2Y8uWLRalAwwjJyfHMAzD2LVrl2G3241PP/3U4kTA5c2aNcvw9fU1unTpYvj7+xvz5s1zPrZz507DZrMZ33//vYUJgf+XlZVlPProo0atWrWMDz/80Pjqq6+MihUrGk8//bRhGIYxbNgw4+GHHzaysrKM3Nxci9OitPn6668Nm81mfPfdd4ZhXPgscP78ecMwDOPzzz83KlasaCQkJFgZEbii7OxsY86cOYbdbjeGDx9uGMaFv3O/+OILY+fOnRanQ2mTkZHh/HXef89TUlKMsLAwY+vWrc7HNm7caHY0l8VNN4rR0aNH9eeff+rkyZPq0KGDJCkmJkYjR47U22+/rQoVKigtLc35zSYVK1ZUkyZNVL58eStjoxT462x6eHjIw8NDubm58vDwkGEYioyM1L333qtFixapd+/estvtnG4Ky1w8s+3bt5fNZlO/fv3Uvn17SdIDDzygxo0bKzc3V4ZhqEKFCmrSpIn8/f0tTo7S6uKZvfvuu+Xp6amRI0dq8uTJGjVqlEJCQvT00087L5s+e/asTp8+zf3QUOyysrLk5eUl6f/Pgu7Zs6d+/vlnPfTQQ/r222/VqVMneXhcuKCiYsWKCg0N5Zv4YJmLZ/ZyypQpowcffFCSNGDAAElSTk6Opk6dqoMHD5qSEaXXX+ezbNmyzl/bbDZlZ2crNTVV2dnZ8vX1lSTFxsbqrbfeUlJSkoKCgkzP7Gq4fK+Y7NixQ7fffrv69++v++67T7fddps+/vhjpaen6/nnn9fjjz+uH374Qe+8845+++03paWl6YsvvlBGRgb/iEKxutxsTp8+Xampqc5iymazydfXV927d9f//vc/7dy5k0IKlvnrzDZv3lzTp09XSkqKqlevrqysLMXHxys+Pl4eHh4qU6aMPvnkEyUnJ/PlEbDEX2f21ltv1ccff6ybbrpJU6ZM0fbt27Vs2TJnIWUYhnJyctS4cWMZhsFlJyg2u3fvVs+ePbVnzx5JF/7BZLPZVKZMGT3//PN65JFH1LVrV3366ac6fvy4MjMz9dNPP8nLy4vPAbDEX2f2Sjw9PfW3v/1Nn3zyiSZMmKDPP/9cv/zyi8LDw01KitLoeuazTJkyzr9D7Xa7xowZow8//FAbNmygkMpj5WlaJdWJEyeMunXrGiNHjjQOHz5sJCUlGb169TKaNWtmjBgxwkhLSzNSU1ON1157zbDb7UaNGjWMRo0aGaGhocavv/5qdXyUYFeazebNmxvDhg0zkpOTDcO4cBp0niZNmhiPPvqokZOTwyUlMN21ZvbMmTOGYRjGk08+aXh6ehpdunQxOnfubFSpUiXfKdKAWa72GeDimc1z6NAh4+WXXzYqVKhg7Nmzx6LUKA0OHz5s3HTTTYbNZjMaN25s7Nu375JtEhMTjTFjxhheXl5GzZo1jUaNGhlBQUF8PoUlrmdmL5aTk2MMGjTICAgI4O9TFLuCzGd6errRoEEDo2PHjoa3t7exefNmE5O6Ps6UKgbHjh1TRkaGevfurYiICFWuXFmzZs1S586dtWbNGr355pvy9PTUP//5T23YsEHjx4/XqFGjtH79ejVp0sTq+CjBrjSbMTEx+uWXX/TWW2/p3LlzKlOmjPM5/fv31yuvvCIPDw/+LylMd62Zfeedd5SVlaU33nhDEydOVLly5dSkSROtWbNGjRs3tjo+SqGrfQbIm9lz585JkhwOh9555x3997//1Y8//qi6detanB4lVWZmpmbPnq1GjRpp48aN8vb2Vrdu3bR///5824WEhOhf//qXNmzYoLFjx2rkyJHatGkTn09huuud2YstWbJEP/74o1asWMHfpyhWBZlPwzB04sQJ7d69W6tXr9amTZvUtGlTC1K7LpthcI54Udu/f786deqkSZMm6d5771V2drY8PT2VnZ2tl19+WUuXLtWkSZPyfZU5YIZrzeayZcs0adIktWrVyvkYYKXr+ft08uTJuvPOOyVd+A8/5SmsVJC/ZyXpt99+k91uV7Vq1SxOjpIsNzdX8+fPV25urnr27KkzZ84oJiZGKSkpmj9/fr5Lnfl7FK6gIDOb5+jRo/Lw8FBISIgFiVGaFGY+3333XXXp0kX16tWzILFro5QqBpmZmWrZsqVCQkI0f/58lSlTxvmh1DAMNWrUSE2aNOHrdWE6ZhPu5npmtnHjxvrss8+sjgpI4u9ZuK6cnJx8Z0KfPHlSXbp0UUpKir777jvVrl1b2dnZ2rhxo5o2bSq73W5hWqBgM3vLLbfku8E0UNwKMp/NmjWTp6cnhf8VcPleEcvNzZXdbtfMmTO1Zs0aPfXUU5Lk/DBqs9l0//33KykpyeKkKG2YTbib653ZEydOWJwUuIC/Z+HK8v7xlPf/oytVqqSFCxfK399fXbt21e7duzV06FANHz5cqampVkYFJBVsZtPS0qyMilLoeufzueeeU0pKCoXUVXBtThHz8PBQTk6OGjRooNmzZ+vRRx/VuXPn9M477yg4OFiSdPjwYVWsWPGSdhUoTswm3A0zC3fDzMKV5RWjef8wMgxDQUFB+uGHH3TfffcpOjpadrtda9asUaVKlSxOCzCzcG0Fmc/AwECL07o2SqkblJubKw+P/z/hLO8U/dTUVLVq1Urz589X7969tXfvXgUGBqpSpUr67rvvtG7dOj6Molgxm3A3zCzcDTMLV/XX2cwrQZOTk5Wbm6sKFSo4/yFVqVIlRUVFaf/+/VqzZg33O4ElmFm4MuazeHH5XiE5HA5J//9/RaULw+np6an4+HjdfPPN2rRpk9q3b6/du3erS5cuqlatmoKDg7Vx40Y1bNjQyvgowZhNuBtmFu6GmYWrutJslilTRvHx8apbt67WrVvn3N4wDH3wwQeaNWuWli1bxj+eYDpmFq6M+TSJgQLbt2+f4e/vbzz++OPOddnZ2YZhGEZCQoIRFBRkDBo0yMjNzXWuz83NNQzDMHJycswPjFKD2YS7YWbhbphZuKrrmc3HHnvMOY+GcWE2V65caRw4cMD0vAAzC1fGfJqHM6UKYc+ePfLx8dHOnTs1ePBgSRdudHb+/Hl9//33evTRRzVt2jTZbLZLTs/nBmcoTswm3A0zC3fDzMJVXc9sfvTRR/nm0GazqW3btqpVq5ZVsVGKMbNwZcyneSilCsFut6tChQrq1q2b1q1bpyeffFKS5O3tra5du2r8+PFX/CDKB1IUJ2YT7oaZhbthZuGqCjObgJWYWbgy5tM83Oi8EBo2bKimTZvqsccek7e3t2bNmqURI0bo7Nmzuu222zRw4EB5eXlZHROlELMJd8PMwt0ws3BVzCbcDTMLV8Z8modSqhACAwO1e/duHTlyRIMHD5afn59iY2N16tQpDRs2TF5eXnzVMyzBbMLdMLNwN8wsXBWzCXfDzMKVMZ/m4fK9AsrKypLdbldISIhSU1Pl6+urFStWKCsrS7Vq1dInn3wiSQwnTMdswt0ws3A3zCxcFbMJd8PMwpUxn+biTKmrOHr0qH799VedP39eERERuuWWW5yn6DVt2lQHDx7U9OnTtWbNGv3vf//Tzp079eabb8rT01PvvfeexelRkjGbcDfMLNwNMwtXxWzC3TCzcGXMp/Uopa5g586d6tatm4KCgvTbb78pIiJCI0eOVM+ePSVduPHZwIEDFRERoQULFuiWW25RdHS0PDw8FBMTY3F6lGTMJtwNMwt3w8zCVTGbcDfMLFwZ8+kiDFzi4MGDRvXq1Y0XX3zROHPmjLF582ajX79+xsCBA42srCzDMAwjKyvLePrpp42NGzcahmEYubm5hmEYRk5OjmW5UfIxm3A3zCzcDTMLV8Vswt0ws3BlzKfrsBmGYVhdjLmS8+fPKzY2Vn/88Yc+//xzeXt7S5JmzJihF198Ufv27VOlSpUsTonSiNmEu2Fm4W6YWbgqZhPuhpmFK2M+XQuX7/1Fbm6uqlevrrp168rb21uGYchms+mOO+6Qn5+fsrKyLvscDw/uGY/ixWzC3TCzcDfMLFwVswl3w8zClTGfroVS6i/Kli2rbt26KTIyMt/6ChUqyMvLK9+Abt26VU2aNGE4YQpmE+6GmYW7YWbhqphNuBtmFq6M+XQtvLOSEhMTtXHjRi1evFi5ubnO4czJyZHNZpMknT17VqdPn3Y+55VXXlH79u118uRJcQUkiguzCXfDzMLdMLNwVcwm3A0zC1fGfLquUn+m1I4dO3T//ffLbrfr+PHjCg0N1SuvvKKYmBgFBgY6T+Wz2Wzy8PCQn5+fxo4dq3fffVc//fQT15qi2DCbcDfMLNwNMwtXxWzC3TCzcGXMp4sz8abqLicpKcmIiooyXn75ZePQoUPGn3/+aTz00ENG3bp1jVGjRhlJSUnObY8fP240adLEeOihhwxvb29j8+bNFiZHScdswt0ws3A3zCxcFbMJd8PMwpUxn66vVJdSu3fvNiIiIi4ZtpEjRxoNGzY03n77bSMtLc0wDMPYs2ePYbPZDB8fH2Pr1q0WpEVpwmzC3TCzcDfMLFwVswl3w8zClTGfrq9U31MqKytL2dnZSk9PlyRlZGRIkt588021a9dOU6dO1cGDByVJFStW1NNPP61ff/1VjRs3tioySglmE+6GmYW7YWbhqphNuBtmFq6M+XR9NsMo3Xfsuu222+Tn56cff/xRkpSZmSm73S5JatasmWrVqqWvvvpKknTu3DmVLVvWsqwoXZhNuBtmFu6GmYWrYjbhbphZuDLm07WVqjOl0tLSlJKSouTkZOe6adOmaffu3erdu7ckyW63Kzs7W5LUunVrpaWlObdlOFFcmE24G2YW7oaZhatiNuFumFm4MubT/ZSaUmrPnj3q3r272rRpo7p16+rLL7+UJNWtW1cTJ07UsmXL9OCDDyorK0seHhfelqSkJJUrV07Z2dl8BSSKDbMJd8PMwt0ws3BVzCbcDTMLV8Z8uidPqwOYYc+ePWrdurX69u2rW2+9VVu2bNGAAQNUr149NWnSRPfff7/KlSunp59+WtHR0YqKipK3t7cWLlyo9evXy9OzVLxNsACzCXfDzMLdMLNwVcwm3A0zC1fGfLqvEn9PqVOnTqlXr16KiorSxIkTnevbtWunhg0batKkSc51KSkpGjt2rE6dOqWyZcvqqaeeUr169ayIjVKA2YS7YWbhbphZuCpmE+6GmYUrYz7dW4mvA7OysnTmzBn17NlTkpSbmysPDw9FRkbq1KlTkiTDMGQYhvz9/fXWW2/l2w4oLswm3A0zC3fDzMJVMZtwN8wsXBnz6d5K/O9AlSpV9MUXX6hVq1aSpJycHElStWrVnANos9nk4eGR72ZoNpvN/LAoVZhNuBtmFu6GmYWrYjbhbphZuDLm072V+FJKkmrXri3pQhPq5eUl6UJTmpSU5Nxm3Lhx+uSTT5x34WdAYQZmE+6GmYW7YWbhqphNuBtmFq6M+XRfJf7yvYt5eHjIMAzn8OW1pq+88orGjh2rrVu3coMzWILZhLthZuFumFm4KmYT7oaZhStjPt1PqThT6mJ593X39PRUWFiY3n33Xb399tvavHmzGjVqZHE6lGbMJtwNMwt3w8zCVTGbcDfMLFwZ8+leSl1FmNeUenl56eOPP1ZAQIB+/vln3XLLLRYnQ2nHbMLdMLNwN8wsXBWzCXfDzMKVMZ/updSdKZUnJiZGkvTLL7/o1ltvtTgN8P+YTbgbZhbuhpmFq2I24W6YWbgy5tM92Iy8c9tKobS0NJUrV87qGMAlmE24G2YW7oaZhatiNuFumFm4MubT9ZXqUgoAAAAAAADWKLWX7wEAAAAAAMA6lFIAAAAAAAAwHaUUAAAAAAAATEcpBQAAAAAAANNRSgEAAAAAAMB0lFIAAAAAAAAwHaUUAADAX0RERGjChAlX3cZms2n+/PmSpPj4eNlsNm3btu2a+y7ItgV1PbkBAABcBaUUAAAoUfr37y+bzSabzSZvb2/VqlVLY8aMUXZ2drEdMywsTImJiWrQoEGxHaMovPrqq873xtPTU0FBQWrdurUmTJigzMzMAu1r1apVstlsOnPmTPGEBQAAJR6lFAAAKHE6deqkxMREHThwQM8//7xeffVVvfPOO8V2vDJlyigkJESenp7FdoyiUr9+fSUmJiohIUErV67Ugw8+qHHjxumOO+5QSkqK1fEAAEApQikFAABKHLvdrpCQENWoUUNPPfWUOnTooO+//16S1LZtWw0bNizf9t26dVP//v3zrUtJSVGvXr1Urlw5VatWTZMnT77i8f56Sd7p06f1yCOPqHLlyvLx8VHt2rU1c+bMfM/57bff1K5dO/n6+qpRo0Zat25dvsd//vlntWrVSj4+PgoLC9Ozzz6rtLQ05+NJSUm677775OPjo8jISH355ZfX9d54enoqJCREVatWVcOGDTV06FCtXr1au3bt0ltvveXc7vPPP9ett94qf39/hYSEqHfv3kpKSnK+3nbt2kmSKlasKJvN5nz/cnNzNW7cOEVGRsrHx0eNGjXSvHnzrisbAAAoXSilAABAiefj46Pz588X6DnvvPOOGjVqpK1bt+qll17Sc889p2XLll3Xc//1r39pz549WrRokeLi4jR16lQFBQXl2+Yf//iHXnjhBW3btk0333yzevXq5bzE8NChQ+rUqZN69OihHTt26N///rd+/vlnPfPMM87n9+/fX0eOHNHKlSs1b948TZkyxVkaFVRUVJQ6d+6sb775xrkuKytLr732mrZv36758+crPj7eWTyFhYXpv//9ryRp3759SkxM1MSJEyVJ48aN02effaaPPvpIu3fv1vDhw9WnTx+tXr26UNkAAEDJ5frnmAMAABSSYRhasWKFlixZoqFDhxbouXfeeadeeuklSdLNN9+stWvX6v3339fdd999zecmJCSoSZMmuvXWWyVduAH5X73wwgu65557JEmjR49W/fr1dfDgQUVFRWncuHF65JFHnGd01a5dW5MmTVKbNm00depUJSQkaNGiRdq4caOaNWsmSfr0009Vt27dAr3Gi0VFRWnp0qXO5YEDBzp/fdNNN2nSpElq1qyZUlNT5efnp8DAQElScHCwKlSoIEnKzMzUG2+8oeXLl6tFixbO5/7888+aNm2a2rRpU+h8AACg5KGUAgAAJc6CBQvk5+enrKws5ebmqnfv3nr11VcLtI+8UuXi5ev9ZrunnnpKPXr00K+//qqOHTuqW7duuuOOO/JtEx0d7fx1aGiopAuX5EVFRWn79u3asWNHvkvyDMNQbm6uDh8+rP3798vT01NNmzZ1Ph4VFeUshwrDMAzZbDbn8pYtW/Tqq69q+/btOn36tHJzcyVdKNzq1at32X0cPHhQ6enplxR358+fV5MmTQqdDQAAlEyUUgAAoMRp166dpk6dKm9vb1WtWjXfDcg9PDxkGEa+7bOysor0+J07d9bvv/+uH374QcuWLVP79u01ZMgQvfvuu85tvLy8nL/OK4Pyip/U1FQNHjxYzz777CX7Dg8P1/79+4s0ryTFxcUpMjJSkpSWlqaYmBjFxMToyy+/VOXKlZWQkKCYmJirXgaZmpoqSVq4cKGqVauW7zG73V7kmQEAgHujlAIAACVOuXLlVKtWrcs+VrlyZSUmJjqXc3JytGvXLueNu/OsX7/+kuWCXB5XuXJl9evXT/369VOrVq3097//PV8pdTW33HKL9uzZc8XXEBUVpezsbG3ZssV5+d6+fft05syZ6853sb1792rx4sWKjY11Lp88eVJvvvmmwsLCJEmbN2/O9xxvb29JF96/PPXq1ZPdbldCQgKX6gEAgGuilAIAAKXKXXfdpREjRmjhwoWqWbOmxo8ff9kyZ+3atXr77bfVrVs3LVu2THPnztXChQuv6xivvPKKmjZtqvr16yszM1MLFiwoUKE1cuRI3X777XrmmWf02GOPqVy5ctqzZ4+WLVumDz/8UHXq1FGnTp00ePBgTZ06VZ6enho2bJh8fHyuue/s7GwdO3ZMubm5OnnypFatWqWxY8eqcePG+vvf/y7pwtlY3t7e+uCDD/Tkk09q165deu211/Ltp0aNGrLZbFqwYIG6dOkiHx8f+fv764UXXtDw4cOVm5urli1b6uzZs1q7dq0CAgLUr1+/634PAABAyce37wEAgFJl4MCB6tevn/r27as2bdropptuuuQsKUl6/vnntXnzZjVp0kRjx47V+PHjFRMTc13H8Pb2VmxsrKKjo9W6dWuVKVNGX3/99XVnjI6O1urVq7V//361atVKTZo00SuvvKKqVas6t5k5c6aqVq2qNm3aqHv37nriiScUHBx8zX3v3r1boaGhCg8PV9u2bfWf//xHsbGx+umnn+Tn5yfpwlles2bN0ty5c1WvXj29+eabl5zlVa1aNY0ePVovvfSSqlSp4vxmwNdee03/+te/NG7cONWtW1edOnXSwoULnZcGAgAA5LEZf72pAgAAAAAAAFDMOFMKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACYjlIKAAAAAAAApqOUAgAAAAAAgOkopQAAAAAAAGA6SikAAAAAAACY7v8ACFq9IzEaAscAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# prompt: stelle die spalte meta_typ dar als kreisdiagramm\n",
+ "\n",
+ "import feedparser\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Assuming 'feed' and 'df' are already defined from the previous code block\n",
+ "\n",
+ "# Assuming 'meta_typ' exists, handle potential KeyError\n",
+ "if 'meta_typ' in df.columns:\n",
+ " # Create the pie chart\n",
+ " plt.figure(figsize=(8, 8))\n",
+ " df['meta_typ'].value_counts().plot.pie(autopct='%1.1f%%')\n",
+ " plt.title('Distribution of meta_typ')\n",
+ " plt.ylabel('') # Hide the y-axis label\n",
+ " plt.show()\n",
+ "else:\n",
+ " print(\"Error: 'meta_typ' column not found in the DataFrame.\")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 675
+ },
+ "id": "huFY2Qs9T0rt",
+ "outputId": "a1f59b96-083a-4b71-ee55-30b36deb3072"
+ },
+ "execution_count": 43,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAKSCAYAAABIowakAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxuElEQVR4nO3dd3hUVeLG8Xdmkkx6IYQktNBCbyKgiIgURSyIotgVxLIqi7rq+rOCvXdXXSsqFooKKEVUOgjSi/TeQgkppLe5vz+iWSOQRpIz5ft5njxhJnfufRNC8nLuuefaLMuyBAAAAK9lNx0AAAAANYvCBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6Owge4qTFjxshms9XKsc4991yde+65JY/nzp0rm82mSZMm1crxhw0bpiZNmtTKsaoqMzNTt9xyi+Li4mSz2XTPPfeYjgQAFUbhA2rB2LFjZbPZSt4CAwNVv359DRgwQG+++aYyMjKq5TgHDhzQmDFjtHr16mrZX3Vy52wV8eyzz2rs2LG644479Pnnn+uGG24wHUmLFy/WmDFjlJaW5tHHAFDzKHxALXryySf1+eef691339U///lPSdI999yjDh06aO3ataW2ffTRR5WTk1Op/R84cEBPPPFEpUvVrFmzNGvWrEq9prLKyvbBBx9o8+bNNXr8UzV79mydeeaZGj16tK6//nqdfvrppiNp8eLFeuKJJ2q88NX0MQDUPD/TAQBfMnDgQHXt2rXk8UMPPaTZs2fr4osv1qBBg7Rx40YFBQVJkvz8/OTnV7P/RLOzsxUcHKyAgIAaPU55/P39jR6/Ig4fPqy2bduajgEAVcIIH2BY37599dhjj2n37t0aN25cyfMnmsP3008/6eyzz1ZkZKRCQ0PVqlUrPfzww5KK591169ZNkjR8+PCS08djx46VVDxPr3379lqxYoXOOeccBQcHl7z273P4/lRUVKSHH35YcXFxCgkJ0aBBg7R3795S2zRp0kTDhg077rV/3Wd52U40hy8rK0v33XefGjVqJKfTqVatWunll1+WZVmltrPZbBo5cqQmT56s9u3by+l0ql27dpo5c+aJv+B/c/jwYY0YMUKxsbEKDAxUp06d9Omnn5Z8/M/5jDt37tS0adNKsu/ateuk+/wz08SJE9W2bVsFBQWpR48eWrdunSTpv//9r1q0aKHAwECde+65J9zX0qVLdcEFFygiIkLBwcHq3bu3Fi1aVPLxMWPG6IEHHpAkNW3a9Lhcn3zyifr27at69erJ6XSqbdu2evfddyv0NanIMXr37q1OnTqd8HWtWrXSgAEDJEm7du2SzWbTyy+/rNdee00JCQkKCgpS7969tX79+krlAVB1jPABbuCGG27Qww8/rFmzZunWW2894Ta///67Lr74YnXs2FFPPvmknE6ntm3bVlIC2rRpoyeffFKPP/64brvtNvXq1UuSdNZZZ5Xs4+jRoxo4cKCuvvpqXX/99YqNjS0z1zPPPCObzaYHH3xQhw8f1uuvv67+/ftr9erVJSORFVGRbH9lWZYGDRqkOXPmaMSIEercubN+/PFHPfDAA9q/f79ee+21UtsvXLhQ3377re68806FhYXpzTff1JAhQ7Rnzx5FR0efNFdOTo7OPfdcbdu2TSNHjlTTpk01ceJEDRs2TGlpabr77rvVpk0bff7557r33nvVsGFD3XfffZKkmJiYMj/nBQsWaOrUqbrrrrskSc8995wuvvhi/fvf/9Y777yjO++8U6mpqXrxxRd18803a/bs2SWvnT17tgYOHKjTTz9do0ePlt1uLylwCxYsUPfu3XX55Zdry5Yt+uqrr/Taa6+pbt26pXK9++67ateunQYNGiQ/Pz99//33uvPOO+VyuUoylaesY9xwww269dZbtX79erVv377kNcuWLdOWLVv06KOPltrXZ599poyMDN11113Kzc3VG2+8ob59+2rdunXlfh8CqAYWgBr3ySefWJKsZcuWnXSbiIgI67TTTit5PHr0aOuv/0Rfe+01S5J15MiRk+5j2bJlliTrk08+Oe5jvXv3tiRZ77333gk/1rt375LHc+bMsSRZDRo0sI4dO1by/IQJEyxJ1htvvFHyXEJCgnXTTTeVu8+yst10001WQkJCyePJkydbkqynn3661HZXXHGFZbPZrG3btpU8J8kKCAgo9dyaNWssSdZbb7113LH+6vXXX7ckWePGjSt5Lj8/3+rRo4cVGhpa6nNPSEiwLrroojL399dMTqfT2rlzZ8lz//3vfy1JVlxcXKn9PvTQQ5akkm1dLpeVmJhoDRgwwHK5XCXbZWdnW02bNrXOO++8kudeeumlUq/9q+zs7OOeGzBggNWsWbMKfQ7lHSMtLc0KDAy0HnzwwVLPjxo1ygoJCbEyMzMty7KsnTt3WpKsoKAga9++fSXbLV261JJk3XvvvZXKA6BqOKULuInQ0NAyr9aNjIyUJE2ZMkUul6tKx3A6nRo+fHiFt7/xxhsVFhZW8viKK65QfHy8pk+fXqXjV9T06dPlcDg0atSoUs/fd999sixLM2bMKPV8//791bx585LHHTt2VHh4uHbs2FHuceLi4nTNNdeUPOfv769Ro0YpMzNT8+bNq/Ln0K9fv1Knqc844wxJ0pAhQ0p9Tf98/s+sq1ev1tatW3Xttdfq6NGjSk5OVnJysrKystSvXz/Nnz+/Qn//fx2BTU9PV3Jysnr37q0dO3YoPT29yp/XnyIiInTppZfqq6++KjnNXlRUpPHjx2vw4MEKCQkptf3gwYPVoEGDksfdu3fXGWecUePfSwCKUfgAN5GZmVmqCPzdVVddpZ49e+qWW25RbGysrr76ak2YMKFS5a9BgwaVukAjMTGx1GObzaYWLVqUOX+tOuzevVv169c/7uvRpk2bko//VePGjY/bR1RUlFJTU8s9TmJiouz20j8KT3acyvh7poiICElSo0aNTvj8n1m3bt0qSbrpppsUExNT6u3DDz9UXl5ehQrbokWL1L9/f4WEhCgyMlIxMTElczaro/BJxf8h2LNnjxYsWCBJ+vnnn3Xo0KETLlnz9+8lSWrZsmWNfy8BKMYcPsAN7Nu3T+np6WrRosVJtwkKCtL8+fM1Z84cTZs2TTNnztT48ePVt29fzZo1Sw6Ho9zjVGbeXUWdbHHooqKiCmWqDic7jvW3Czxq08kylZf1zwL/0ksvqXPnzifcNjQ0tMxjb9++Xf369VPr1q316quvqlGjRgoICND06dP12muvVXmE+O8GDBig2NhYjRs3Tuecc47GjRunuLg49e/fv1r2D6D6UPgAN/D5559LUsmVjSdjt9vVr18/9evXT6+++qqeffZZPfLII5ozZ4769+9f7Xfm+HO06U+WZWnbtm3q2LFjyXNRUVEnXKNt9+7datasWcnjymRLSEjQzz//rIyMjFKjfJs2bSr5eHVISEjQ2rVr5XK5So3yVfdxKuPPU9Ph4eHlFqeTfU2///575eXlaerUqaVGGufMmVPpPGX9vTkcDl177bUaO3asXnjhBU2ePFm33nrrCUvt37+XJGnLli1uf4cVwFtwShcwbPbs2XrqqafUtGlTXXfddSfdLiUl5bjn/hwBysvLk6SSeVPVtUjun1dW/mnSpElKSkrSwIEDS55r3ry5lixZovz8/JLnfvjhh+OWb6lMtgsvvFBFRUV6++23Sz3/2muvyWazlTr+qbjwwgt18OBBjR8/vuS5wsJCvfXWWwoNDVXv3r2r5TiVcfrpp6t58+Z6+eWXlZmZedzHjxw5UvLnk31N/yxcfx3hTE9P1yeffFLpPOX9vd1www1KTU3V7bffrszMTF1//fUn3G7y5Mnav39/yePffvtNS5curba/SwBlY4QPqEUzZszQpk2bVFhYqEOHDmn27Nn66aeflJCQoKlTpyowMPCkr33yySc1f/58XXTRRUpISNDhw4f1zjvvqGHDhjr77LMlFZevyMhIvffeewoLC1NISIjOOOMMNW3atEp569Spo7PPPlvDhw/XoUOH9Prrr6tFixallo655ZZbNGnSJF1wwQUaOnSotm/frnHjxpW6iKKy2S655BL16dNHjzzyiHbt2qVOnTpp1qxZmjJliu65557j9l1Vt912m/773/9q2LBhWrFihZo0aaJJkyZp0aJFev3118ucU1lT7Ha7PvzwQw0cOFDt2rXT8OHD1aBBA+3fv19z5sxReHi4vv/+e0kqudvHI488oquvvlr+/v665JJLdP755ysgIECXXHJJSRH74IMPVK9ePSUlJVUqz8mO8WcRPO2009S+fXtNnDhRbdq0UZcuXU64nxYtWujss8/WHXfcoby8PL3++uuKjo7Wv//976p+qQBUhslLhAFf8eeyLH++BQQEWHFxcdZ5551nvfHGG6WW6fjT35dl+eWXX6xLL73Uql+/vhUQEGDVr1/fuuaaa6wtW7aUet2UKVOstm3bWn5+fqWWQendu7fVrl27E+Y72bIsX331lfXQQw9Z9erVs4KCgqyLLrrI2r1793Gvf+WVV6wGDRpYTqfT6tmzp7V8+fLj9llWtr8vy2JZlpWRkWHde++9Vv369S1/f38rMTHReumll0otVWJZxUug3HXXXcdlOtlyMX936NAha/jw4VbdunWtgIAAq0OHDidcOqayy7L8PdOfy5O89NJLpZ7/82s9ceLEUs+vWrXKuvzyy63o6GjL6XRaCQkJ1tChQ61ffvml1HZPPfWU1aBBA8tut5daPmXq1KlWx44drcDAQKtJkybWCy+8YH388ccnXcalLCc7xp9efPFFS5L17LPPHvfav37er7zyitWoUSPL6XRavXr1stasWVOpHACqzmZZBmc1AwA83htvvKF7771Xu3btOu7q5F27dqlp06Z66aWXdP/99xtKCIA5fACAKrMsSx999JF69+59wuVxALgH5vABgA/KzMw84UUhfxUTE3PSZWSysrI0depUzZkzR+vWrdOUKVNqIiaAakLhAwAf9PLLL+uJJ54oc5udO3eedNmUI0eO6Nprr1VkZKQefvhhDRo0qAZSAqguzOEDAB+0Y8eOcm89d/bZZ5d55TgAz0HhAwAA8HJctAEAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CBwAA4OUofAAAAF6OwgcAAODlKHwAAABejsIHAADg5Sh8AAAAXo7CB5+za9cu2Ww2rV692nQUAABqBYUPNerIkSO644471LhxYzmdTsXFxWnAgAFatGhRrRx/2LBhGjx4cKnnGjVqpKSkJLVv375WMgAAYJqf6QDwbkOGDFF+fr4+/fRTNWvWTIcOHdIvv/yio0ePGsvkcDgUFxdn7PgAANQ2RvhQY9LS0rRgwQK98MIL6tOnjxISEtS9e3c99NBDGjRokCRpz549uvTSSxUaGqrw8HANHTpUhw4dKtnHmDFj1LlzZ33++edq0qSJIiIidPXVVysjI6Nkm0mTJqlDhw4KCgpSdHS0+vfvr6ysLI0ZM0affvqppkyZIpvNJpvNprlz557wlO7UqVOVmJiowMBA9enTR59++qlsNpvS0tJKtlm4cKF69eqloKAgNWrUSKNGjVJWVlbJx995552SfcTGxuqKK66ouS8uAACVQOFDjQkNDVVoaKgmT56svLy84z7ucrl06aWXKiUlRfPmzdNPP/2kHTt26Kqrriq13fbt2zV58mT98MMP+uGHHzRv3jw9//zzkqSkpCRdc801uvnmm7Vx40bNnTtXl19+uSzL0v3336+hQ4fqggsuUFJSkpKSknTWWWcdl2Pnzp264oorNHjwYK1Zs0a33367HnnkkeMyXHDBBRoyZIjWrl2r8ePHa+HChRo5cqQkafny5Ro1apSefPJJbd68WTNnztQ555xTXV9KAABOjQXUoEmTJllRUVFWYGCgddZZZ1kPPfSQtWbNGsuyLGvWrFmWw+Gw9uzZU7L977//bkmyfvvtN8uyLGv06NFWcHCwdezYsZJtHnjgAeuMM86wLMuyVqxYYUmydu3adcLj33TTTdall15a6rmdO3dakqxVq1ZZlmVZDz74oNW+fftS2zzyyCOWJCs1NdWyLMsaMWKEddttt5XaZsGCBZbdbrdycnKsb775xgoPDy+VEwAAd8EIH2rUkCFDdODAAU2dOlUXXHCB5s6dqy5dumjs2LHauHGjGjVqpEaNGpVs37ZtW0VGRmrjxo0lzzVp0kRhYWElj+Pj43X48GFJUqdOndSvXz916NBBV155pT744AOlpqZWKuPmzZvVrVu3Us9179691OM1a9Zo7NixJaOWoaGhGjBggFwul3bu3KnzzjtPCQkJatasmW644QZ98cUXys7OrlQOAABqCoUPNS4wMFDnnXeeHnvsMS1evFjDhg3T6NGjK/x6f3//Uo9tNptcLpek4gswfvrpJ82YMUNt27bVW2+9pVatWmnnzp3V+jlkZmbq9ttv1+rVq0ve1qxZo61bt6p58+YKCwvTypUr9dVXXyk+Pl6PP/64OnXqVGoOIAAAplD4UOvatm2rrKwstWnTRnv37tXevXtLPrZhwwalpaWpbdu2Fd6fzWZTz5499cQTT2jVqlUKCAjQd999J0kKCAhQUVFRma9v1aqVli9fXuq5ZcuWlXrcpUsXbdiwQS1atDjuLSAgQJLk5+en/v3768UXX9TatWu1a9cuzZ49u8KfBwAANYXChxpz9OhR9e3bV+PGjdPatWu1c+dOTZw4US+++KIuvfRS9e/fXx06dNB1112nlStX6rffftONN96o3r17q2vXrhU6xtKlS/Xss89q+fLl2rNnj7799lsdOXJEbdq0kVR8Onjt2rXavHmzkpOTVVBQcNw+br/9dm3atEkPPvigtmzZogkTJmjs2LGSisukJD344INavHixRo4cqdWrV2vr1q2aMmVKyUUbP/zwg958802tXr1au3fv1meffSaXy6VWrVpVw1cSAIBTQ+FDjQkNDdUZZ5yh1157Teecc47at2+vxx57TLfeeqvefvtt2Ww2TZkyRVFRUTrnnHPUv39/NWvWTOPHj6/wMcLDwzV//nxdeOGFatmypR599FG98sorGjhwoCTp1ltvVatWrdS1a1fFxMSccMHnpk2batKkSfr222/VsWNHvfvuuyVX6TqdTklSx44dNW/ePG3ZskW9evXSaaedpscff1z169eXJEVGRurbb79V37591aZNG7333nv66quv1K5du1P9MgIAcMpslmVZpkMA7uaZZ57Re++9V+p0M9xPfqFLqdn5ysgtUH6hpSKXpUKXS4UuS4VF//tzUdHfn7dU5HKpoKj4x1+Qv0MhToeCAvwUHOD44634z0EBDoUE+Mlhtxn+bAGg6rjTBqDiRZO7deum6OhoLVq0SC+99FLJ6VrUjiKXpdTsfKVm5SslK1+p2flKySr44/0fz2f/9X2BMvMKay1fgJ9dwX+Uv6A/SmGo008xYU7FhDoVE+ZUvXCnYkIDVS/cqXphTkUGB9RaPgAoC4UPkLR161Y9/fTTSklJUePGjXXffffpoYceMh3L6+TkF2nX0SztPpqt3UeztOuP97uPZispPUcuNz7fkF/oUn6hS2nZx88DPZlAf7vqRwQpPjLwj/dBahAZqPiIIDWqE6zGdYIZOQRQKzilC6BaZeQWaFdytnanFBe5Xcl/vD+apcMZx99xxZcF+NnVPCZULWND1TI2TIn1it83rhMsO0UQQDWi8AGosgNpOVq3P13r9qVr7f50bTiQruTMfNOxPF6g/59FMEyJsaFqWS9MLWPD1KhOUMmV4wBQGRQ+ABVy+Fiu1v5R7NbtS9O6/ceUnMmIXW0KDnCoRb1QtY0PV5eEKHVNiFKzmFDTsQB4AAofgOMkZ+YVj9rtS9e6/Wlatz9dh45R7txR3dAAdWkcpa5NotS1SR21rx+hAD9W3AJQGoUPgFKz8rVoe7IWbUvWom1HtSeF+wB7KqefXZ0aRur0JlHq1iRKpzeuo4hg//JfCMCrUfgAH5RbUKTlu1K1YNsRLdqWrA0Hjrn1FbKoOptNahETqq5N6qhrQpR6JdZVvfBA07EA1DIKH+ADXC5Lvx84poXbkrVw2xEt35WqvEKX6VgwwGaT2tUPV9/WserXup46NozgQhDAB1D4AC+1NyVbC7YWn6ZdvD1ZqZVYPw6+IybMqT6tYtS3dax6JdZViJPlWQFvROEDvMiOI5matjZJ09YladPBDNNx4GEC/Ow6o2kd9WtdT/3axKpRnWDTkQBUEwof4OEoeagpifVC1bdNPfVrHavTE6K4KwjgwSh8gAfacSRT09cl6Ye1lDzUjrqhAbqkU31dflpDdWgYYToOgEqi8AEegpIHd5FYL1SXdWmgwZ0bqH5kkOk4ACqAwge4sb0p2Zqyer+mrTuojUnHTMcBSrHbpDObReuy0xpoYId4hXLBB+C2KHyAm8krLNKPvx/S+GV7tHj7UfEvFJ4gyN+h89rG6rIuDXROYgzz/QA3Q+ED3MSWQxn66rc9mrxqP0uowKPFhDk1qFN9XXZaA7VvwHw/wB1Q+ACDcguK9P2aA/rytz1atSfNdByg2rWJD9fws5poUOf6CvR3mI4D+CwKH2DA7qNZGrdktyau2Kc0RvPgA6JDAnTtGY11w5kJ3NoNMIDCB9QSl8vS7E2H9fmS3Zq/9Qhz8+CT/B02XdghXjf3bKpOjSJNxwF8BoUPqGHZ+YX6cukejV28S/tSc0zHAdxGl8aRuvnsprqgXZz8HHbTcQCvRuEDakh6doE+WbxTny7exUUYQBnqRwTq+h4JurZ7Y0UGB5iOA3glCh9QzQ5n5OrDBTv15dI9yswrNB0H8BhB/g4NPq2Bbu7ZRImxYabjAF6FwgdUk70p2Xpv3nZNXLFP+YUu03EAj9avdT3de15LlnUBqgmFDzhFWw9l6J252/X9mgMqdPHPCahO57eN1b/Ob6nWceGmowAejcIHVNGavWl6e842/bzxEFfcAjXIZpMubB+ve/oncqoXqCIKH1BJv24/qrfnbNWibUdNRwF8it0mXdKpvu7ul6hmMaGm4wAehcIHVNCmg8f07PRNmr/liOkogE9z2G0a3LmB7u6XqMbRwabjAB6BwgeU49CxXL0ya7MmrdgnpugB7sPPbtMVpzfUP/slqkFkkOk4gFuj8AEnkZVXqP/O264PFuxUTkGR6TgATiLAYdfQbg01sk+i4iK4bRtwIhQ+4G+KXJbGL9ur137eoiMZeabjAKigQH+77ujdQrf3bqZAf4fpOIBbofABfzFn02E9N2OjthzKNB0FQBU1qhOkRy9qqwHt4kxHAdwGhQ+Q9PuBdD03fZMWbks2HQVANemVWFdjBrVTc67oBSh88G1J6Tl66cfNmrxqPxdkAF7I32HTsLOa6O7+LRXq9DMdBzCGwgefVFjk0vsLdujNX7Yqt4DboAHeLibMqf+7oLUu79JANpvNdByg1lH44HPW7E3T/327ThuTjpmOAqCWnZ4QpScGteMevfA5FD74jKy8Qr08a7M+XbyL07eAD7PbpKu6NdYDA1qpTkiA6ThAraDwwSfM2XRYj05er/1pOaajAHATEUH+uv/8lrr+zARO88LrUfjg1ZIz8/TE9xv0/ZoDpqMAcFPdm9bRi0M6qkndENNRgBpD4YPXmrB8r56dvlFp2QWmowBwc4H+dt1/fivd3LOp7HZG++B9KHzwOruSs/TQt+v0646jpqMA8DCnJ0TpxSs6snYfvA6FD16jsMil/84vXmolr5ClVgBUjdPPrnvPa6lbezWTg9E+eAkKH7zCtsOZGvXVKm1gqRUA1eT0hCi9OrSTEqKZ2wfPR+GDx/v6tz164vsNyikoMh0FgJcJCXDokYva6tozGpuOApwSCh88VnpOgR7+dp2mrUsyHQWAl+vTKkYvXNFR9cICTUcBqoTCB4+0YneKRn21mnX1ANSaqGB/PXNZB13YId50FKDSKHzwKC6Xpbdmb9Obs7eqiNtlADDg6m6NNGZQOwX6O0xHASqMwgePkZSeo3u+Xq2lO1NMRwHg49rVD9e7152uxtHBpqMAFULhg0eYuf6g/u/btSyiDMBthAf66ZWhnXVe21jTUYByUfjg1nILivTUDxv0xdI9pqMAwHFsNum2c5rp3wNas2Yf3BqFD25r88EMjfpqlTYfyjAdBQDKdEbTOnrr2tO4ihdui8IHt/TD2gN6YOJa1tYD4DFiwpx6+5rTdEazaNNRgONQ+OBWLMvSqz9t0Vuzt5mOAgCV5rDb9MCAVrr9nGay2TjFC/dB4YPbyM4v1L3jV+vH3w+ZjgIAp+S8trF6+cpOigjyNx0FkEThg5vYm5KtWz9brk0Hma8HwDs0rhOsd6/vonb1I0xHASh8MG/pjqO684uVOpqVbzoKAFQrp59dL13ZSYM61TcdBT6Owgejvvptjx6fsl4FRXwbAvBONpv0wIBWuvPcFqajwIdR+GBEYZFLT/2wQZ/+utt0FACoFdd0b6ynLm0nP4fddBT4IAofal1adr7u+nKlFm07ajoKANSq3i1j9M51XRTi9DMdBT6Gwodate1whm75dLl2Hc02HQUAjGgbH65PhndTbDiLNKP2UPhQa+ZtOaKRX6xURl6h6SgAYFT9iEB9PLybWseFm44CH0HhQ634fs0B/WvCai7OAIA/hDn99M71XdQrMcZ0FPgACh9q3BdLd+uxyevl4jsNAErxd9j0zGUdNLRrI9NR4OUofKhR78zdphdnbjYdAwDc2j/7ttB957cyHQNejMKHGvPc9I367/wdpmMAgEe47LQGemFIRwX4sWwLqh+FD9XO5bL08Hfr9PWyvaajAIBH6ZVYVx/c2FWB/g7TUeBlKHyoVvmFLt0zfpWmrztoOgoAeKSeLaL14Y3dFBRA6UP1ofCh2mTnF+r2z1dowdZk01EAwKOd2ayOPh7WTcEBLNCM6kHhQ7VIzy7Q8LG/aeWeNNNRAMArdG9SR58M78ZdOVAtKHw4ZYczcnXjR79p08EM01EAwKucnhClT2/urlBKH04RhQ+nZG9Ktq7/aKl2c6s0AKgRnRtF6rMR3RUe6G86CjwYhQ9VdjA9V1e8t1j7UnNMRwEAr9axYYQ+v/kMRQRT+lA1LPaDKknOzNO1Hy6h7AFALVi7L13XfbREadn5pqPAQ1H4UGnp2QW64aPftONIlukoAOAz1u8/pms+WKqULEofKo/Ch0rJyivUTZ/8po1Jx0xHAQCfszHpmK79YImOZuaZjgIPQ+FDheUWFGnEp8u0em+a6SgA4LM2HczQ1e9T+lA5FD5USH6hS/8Yt0JLdqSYjgIAPm/r4UwNH7tMWXmFpqPAQ1D4UK4il6W7v16luZuPmI4CAPjD2n3puuOLlSoocpmOAg9A4UOZLMvSA5PWaMZ67o0LAO5m/pYj+vektWKFNZSHwocyPTZlvb5dud90DADASXy3ar+em7HJdAy4OQofTuq56Rs1bske0zEAAOV4f/4Ofbhgh+kYcGMUPpzQW79s1X/n88MDADzFM9M3aspqzsjgxCh8OM43K/bplZ+2mI4BAKgEy5IemLhWC7cmm44CN0ThQylLdhzVQ9+uMx0DAFAF+UXFS2it359uOgrcDIUPJbYfydTtn69QPpf4A4DHyswr1LBPlmnP0WzTUeBGKHyQJKVk5evmscuUnlNgOgoA4BQlZ+bpxo+XcjcOlKDwQXmFRbrts+Xazf8GAcBr7DqareFjlyk7n7txgMIHSf+etFbLd6eajgEAqGZr96XrgYlrTceAG6Dw+bj/zNmmKasPmI4BAKgh09Yl6b15203HgGEUPh826/eDennWZtMxAAA17KUfN2vBVu6H7ssofD5q08Fjunf8anH7RQDwfkUuS//8apX2pjBX21dR+HxQSla+bvl0ubLyi0xHAQDUkrTsAt3++QrlFvCz3xdR+HxMQZFLd4xboX2pOaajAABq2YakY/q/b7iIwxdR+HzM0z9s0NKdKaZjAAAMmbz6gD5auNN0DNQyCp8Pmbk+SZ/+utt0DACAYc9N36hftx81HQO1iMLnI/amZOvfkxjGBwBIhS5LI79cqQNpTO/xFRQ+H1BQ5NI/v1qlY7mstg4AKHY0K1//GMdFHL6CwucDXvpxs1bvTTMdAwDgZtbuS9ejk9ebjoFaQOHzcnM2HdYHC3aYjgEAcFOTVuzTuCXM7/Z2FD4vdjA9V/dNXMPiygCAMj09bYO2Hc4wHQM1iMLnpYpclkZ9vUopWfmmowAA3FxugUv3jF+tgiKX6SioIRQ+L/XGz1v0G+vtAQAqaP3+Y3r95y2mY6CGUPi80OJtyXp7zjbTMQAAHubdudu1bBeDBd7IZlnM8PImyZl5uvCNBTqckWc6CmpZYUay0uaOVc6OFbIK8+QXGa/oC++RMz5RVlGh0hZ8rpzty1WYflB2Z4gCEzopsvcw+YVFn3Sf6b9OUPaWX1WQsk82vwA5G7RRVO9h8o9uWLJNyi8fKGv9L7L5Byqy900Kbden5GNZmxYqa/0vqnfF6Br93AFUn4ZRQZp5zzkKdfqZjoJqxN+mF7EsS/eOX03Z80FFuZk6OO7fCmzcUfWuHCN7cIQKUw/IHhgqSbIK85R/cLsizrpaAfWaypWbqZRf3teRb59S/E2vn3S/uXvXK6zLRQqIS5SsIqXN+0yHJjym+iPelT0gUNnblipr4zzVG/qUClMP6OiMNxTUtIscwRFy5WUpbf5nir366Vr6KgCoDvtSczRm6u96+cpOpqOgGnFK14t8uGCnFmxNNh0DBhxbMkl+4XVV96J75KzfSv6RcQpq2kX+UfGSJLszRLFXP62QNr3kH91QzgatVee8fyj/4DYVHjt80v3GDn1SoR36KyAmQQH1min6ontVdOyI8g8VTxkoOLpXgY06yBmfqJC2vWULCFZh+iFJUuqcTxR22oXyC69X818AANVq0op9mrEuyXQMVCMKn5fYmZylV37abDoGDMnZtlQBcYk6Mvk57X3rOh34ZJQyVs8s8zWuvGxJNtmdoRU+jisvS5JKRg4DYpoq/+A2FeVmKu/gtuJTyVH1lbvvd+Uf2q6w0y+p8ucEwKyHv1unw8dyTcdANeGUrhewLEsPfrNWuQVcTu+rCtIOqmDVdIV3G6zYHkOVl7RVqb+8L5vDX6Ed+h23vVWYr7S5nyi47TmyO4MrdAzLcin1lw/kbNBWATFNJElBzU5XSLtzdfDTe2XzC1Ddi+6V3d+plB/fUfRF9ypj1XRlrPxBjqBw1RkwUgExCdX5aQOoQanZBbp/0lp9OrybbDab6Tg4RRQ+LzBu6R6WYPF1liVnXAtF9b5JkhQQ21wFybuVsXr6cYXPKirUkSnPS5Kiz7+rwodImfWu8o/sVtx1L5Z6PvLs6xR59nUlj9MWfqnAJp1lszuU/ut41b/5P8rZ9puOTntV8cPeqOpnCMCA+VuO6LNfd+ums5qYjoJTxCldD3cgLUcvzNhkOgYMc4RGyb9u41LP+Uc3UtGxI6We+7PsFaYfVr2rnqrw6F7KT+8qZ/syxV7zrPzC6550u4Kje5W1YY4ie12v3D3rFNiwvRzBEQpu3Uv5h7b/cRoZgCd5bsZG7sLhBSh8Hu7h79YpM6/QdAwY5mzQVgUp+0o9V5Cyv9QFEyVlL/WAYq9+Ro6g8HL3a1mWUn56V9lbflXs1c/IPzKuzG2P/vgfRfW9RfaAIMlyyXL98b3553uLaQeAp8ktcOnur7kLh6ej8Hmwb1fu09zNR8rfEF4vvNulyjuwWem/TlBB6gFlbZirzDUzFdrlIkl/lL3Jzyn/4DbVveR+yeVSUWaqijJTZRUVlOzn0NcP69iK70sep/z0rjJ/n6u6lzwge0BwyWtcBccv/ZO55kc5gsIV3OIMSZKzQRvl7l6rvP2bdGzZFPlHNy652AOAZ/n9wDF9sGCH6Rg4BSy87KGSM/N03qvzlJpdUP7G8AnZ235T2rxPVZB6QH4RsQrvNlhhnS+QJBWmH9L+90ac8HWx1zyrwMYdJUn73r1ZoR36lczJ2/3CxSd8TfSF9yi0Q/+Sx0VZqUr67D7FXf9SqYWc0xZ9pYzlU2UPjlDdi+6Vs36ravlcAdS+IH+HZt17jhrVqdhUELgXCp+HuuuLlZrGGkkAgFrUv009fXhTN9MxUAWc0vVAP/5+kLIHAKh1P288rFm/HzQdA1VA4fMw6TkFemzyetMxAAA+6onvNygnv8h0DFQShc/DPDNtA/fKBQAYsz8tR2/8stV0DFQShc+DLNyarAnL95W/IQAANeijhTu05RBr83kSCp+HKChy6bEpnMoFAJhXUGTpUaYXeRQKn4f4dPEu7UzOMh0DAABJ0m87UzRpBWedPAWFzwOkZuXrTeZLAADczHPTNyotO990DFQAhc8DvP7zFh3L5fZpAAD3cjQrXy/M3Gw6BiqAwufmth3O0BdL95iOAQDACX29bI9W7kk1HQPloPC5uWembVShi5uhAADck2VJj363XkX8rnJrFD43Nn/LEc3ZfMR0DAAAyrQh6Zi+4QIOt0bhc1NFLktPT9tgOgYAABXy6k9blFvAHTjcFYXPTX312x5tOZRpOgYAABVy8FiuPlq403QMnASFzw0dyy3Qaz9tMR0DAIBKeW/edqVmsUyLO6LwuaH/zN6mo/yDAQB4mIzcQr05m3Vj3RGFz83sOZqtTxbtMh0DAIAq+WLJHu1NyTYdA39D4XMzz83YqPwil+kYAABUSX6RSy/9yGLM7obC50bW7E3TjPUHTccAAOCUfL/2gDYdPGY6Bv6CwudG3mLeAwDAC1iW9OosLj50JxQ+N/H7gXT9vPGw6RgAAFSLWRsOac3eNNMx8AcKn5t4e/Y20xEAAKhWL89iLp+7oPC5gS2HMjTzd+buAQC8y4KtyfptZ4rpGBCFzy28NXubLO45DQDwQi9zxa5boPAZtv1IpqatPWA6BgAANeK3XSn6dftR0zF8HoXPsP/M2SYXo3sAAC/2wYIdpiP4PAqfQXuOZmvqakb3AADebc7mw9p6KMN0DJ9G4TPonbnbVMjwHgDAy1kWo3ymUfgM2Z+Wo29W7jMdAwCAWjF51QEdPpZrOobPovAZ8u7cbSooYnQPAOAb8otc+mTxLtMxfBaFz4BDx3I1YTmjewAA3/LFkt3Kyis0HcMnUfgMeH/+DuUXukzHAACgVh3LLdTXy/aajuGTKHy1LDu/UBOW880OAPBNHy/cqcIiBj1qG4Wvlk1edUAZuQxnAwB80/60HE1bl2Q6hs+h8NWyz5fsNh0BAACjWKKl9lH4atHyXSnamHTMdAwAAIxav/+YFm9LNh3Dp1D4ahGjewAAFHufUb5aReGrJcmZeZqx7qDpGAAAuIW5m49o80Fut1ZbKHy1ZPyyvcrnqiQAAEp8uZQzX7WFwlcLilyWvly6x3QMAADcypQ1B5RXWGQ6hk+g8NWCXzYe0v60HNMxAABwK2nZBZr1+yHTMXwCha8WcLEGAAAnxs0IageFr4btTM7SQi49BwDghBZtS9YBzoLVOApfDRu3ZLcsy3QKAADck8uSJq3YZzqG16Pw1aDcgiK+iQEAKMfEFXtlMTpSoyh8NeiHtUlKzykwHQMAALe2NyVHv24/ajqGV6Pw1aApq/ebjgAAgEfg4o2aReGrIUcz87SY/60AAFAhM38/qGO5nBWrKRS+GjJ9XZKKXMxHAACgInILXJq6+oDpGF6LwldDpq7hmxYAgMqYyGndGkPhqwEH0nK0fHeq6RgAAHiUNfvStflghukYXonCVwN+WHuAtfcAAKgCLt6oGRS+GvD9miTTEQAA8EjT1yWxJl8NoPBVs53JWVq3P910DAAAPFJSeq7W7uP3aHWj8FWz77lYAwCAU/Lj7wdNR/A6FL5qxtW5AACcGgpf9aPwVaONSce07XCm6RgAAHi07UeytP0Iv0+rE4WvGjG6BwBA9WCUr3pR+KrRD2spfAAAVIdZvx8yHcGrUPiqyeq9adqbkmM6BgAAXmHNvjQdOpZrOobXoPBVk9mbDpuOAACA17AsaRandasNha+azNtyxHQEAAC8yqwNnNatLhS+apCala91+9JMxwAAwKss2XFU6TkFpmN4BQpfNVi4LVku7gIDAEC1KiiyNHsTo3zVgcJXDTidCwBAzeBq3epB4asGC7ZS+AAAqAnzthxRbkGR6Rgej8J3ijYmHdOhY3mmYwAA4JWy84u0ZMdR0zE8HoXvFM3ndC4AADVqyY4U0xE8HoXvFM3ndC4AADWKEb5TR+E7Bdn5hVq2K9V0DAAAvNr6/enKyis0HcOjUfhOwZIdR5Vf6DIdAwAAr1bosrR8NwMsp4LCdwrmb0k2HQEAAJ/Aad1TQ+E7Bay/BwBA7aDwnRoKXxXtTcnWzuQs0zEAAPAJ6/alKzufeXxVReGrosXbOZ0LAEBtKXRZXCh5Cih8VbSCyaMAANQqTutWHYWvilbuSTMdAQAAn0LhqzoKXxWkZxdo+5FM0zEAAPApzOOrOgpfFazcmyrLMp0CAADfUuiytJx5fFVC4auCVczfAwDACE7rVg2FrwpW7KHwAQBgwtKdKaYjeCQKXyW5XJbW7E03HQMAAJ/0+4F0FbmYV1VZFL5K2pGcqUxu4AwAgBG5BS5ufFAFFL5KWruP0T0AAEzakHTMdASPQ+GrJAofAABmbaTwVRqFr5LW7kszHQEAAJ+24QCFr7IofJVQ5LIYRgYAwDBG+CqPwlcJWw5lKLfAZToGAAA+7XBGnpIz80zH8CgUvkpYt5/5ewAAuANG+SqHwlcJmw9mmI4AAABE4assCl8lsO4PAADugQs3KofCVwk7jmSajgAAACRtTOKsW2VQ+CqooMilfak5pmMAAABJ249kKq+wyHQMj0Hhq6DdR7NVyL37AABwC4UuS1sPceatoih8FcT8PQAA3Avz+CqOwldBzN8DAMC9bGL1jAqj8FUQI3wAALiXvanZpiN4DApfBe04QuEDAMCdcDFlxVH4KmgHI3wAALiV/YzwVRiFrwKO5RZwzz4AANzMsdxCHcstMB3DI1D4KmAnp3MBAHBL+zmtWyEUvgrYkcwVugAAuCMKX8VQ+CqAET4AANzTPubxVQiFrwK4YAMAAPe0P40Rvoqg8FXAwfRc0xEAAMAJsDRLxVD4KoArdAEAcE+M8FUMha8CkjPzTUcAAAAnwAhfxVD4ypFbUKTMvELTMQAAwAmkZOUrJ7/IdAy3R+ErB6dzAQBwb/vTuFK3PBS+chzldC4AAG5tL6d1y0XhKwcjfAAAuLekNFbTKA+FrxyM8AEA4N7Sc7ifbnkofOU4wggfAABuLSOXwlceCl85GOEDAMC9HaPwlYvCVw7m8AEA4N6O5bB8WnkofOWg8AEA4N4Y4Ssfha8cnNIFAMC9ZeQywlceCl85GOEDAMC9HeMq3XJR+MrgcllKzWaEDwAAd8Yp3fJR+MqQU1Akl2U6BQAAKAsXbZSPwleG/EKX6QgAAKAcOQVFKizid3ZZKHxlyOebBwAAj3CMCzfKROErAyN8AAB4Bi7cKBuFrwx5FD4AADwCF26UjcJXBkb4AADwDKzFVzYKXxmYwwcAgGeg8JWNwlcGRvgAAPAMRayjViYKXxkofAAAeAaXReErC4WvDPlFRaYjAACACqDwlY3CVwZG+AAA8AwUvrJR+MrAsiwAAHgGrrMsG4WvDIzwAQDgGRjhKxuFrwwsywIAgGdwcZVumfxMB3BnBYzwAV5nUuJPSg3armfs6Tqal2o6DoBq4h85RlJj0zHcFoWvDA67zXQEANXo+8Rp6rD3C0lS9+Aovdj6LE1NXWc4FYDq4LA7TEdwa5zSLYPTj28ewBvYbJZmJX5XUvYkKSI7Vc+snKZ37A0UFxRjMB2A6uCw8Tu7LBS+Mjj9+fIAns7fbmlO8wlquXfiCT/ea/uvmrx9i66K6iCbGNUHPJXdxu/ssvDVKUOgP/9bADyZ0+7S3Kbj1GTflDK3C8nL0KMrp+kjV4waB8fXUjoA1YkRvrJR+Mrg9OPLA3iqEIdLC5p8ogb7Z1T4Nd12L9c3W9ZqWGRHfnkAHoYRvrLx1SkDI3yAZ4rwL9T8xu+r3oFfKv3awIIc3bfqB43LC1WL0EY1kA5ATeA/aWWj8JWBwgd4nuiAAs2v/46ik+af0n7a71+nCRuW6Y6IDvKzs6AB4O4Y4SsbX50ycEoX8CxxznzNi3tTEYeWVMv+/IvydefqaRqfGaB24U2rZZ8AagbLspSNRlMGRvgAz9E4KFezY15V6OEV1b7vloc26Yu1C/WvsHYKdDirff8ATl2QX5DpCG6NwleGQJZlATxCYkiOZkW9pODktTV2DIdVpOFrZ2hSWpG6RLSoseMAqJoIZ4TpCG6NRlMGFl4G3F+7sCxNC3tOgSkba+V4Cck7NHb1HD0S0lrBfsG1ckwA5Yt0RpqO4NYofGVghA9wb10iMjQ5+BkFpG2r1ePaZOnq9bM0OTlLPSNb1+qxAZwYI3xlo9GUIZARPsBt9YhK14SAJ+WfvstYhvjUvXpv1Sw9HZio8IAwYzkAXxfkFyQn82vLROErg91uk7+DWy0B7qZvdKrG2Z+QX8Z+01EkSZdu/EVTDiSrf1Q701EAnxQeEG46gtuj8JWDK3UB93JhTLI+dI2WI+ug6Sil1M04pNdWztArAU0U7YwyHQfwKczfKx+FrxyRwf6mIwD4w5DYQ3q74HHZc5JNRzmp8zfP15Q9e3RJVAfTUQCfwfy98lH4ylEvLNB0BACSros/oJdzH5c9N810lHJFZKfq2ZXT9B97Q8UFxZiOA3g9Cl/5KHzliAllEihg2i0N9+rpzNGy5WWYjlIp52xfrMnbt2hoVAfZxHxgoKZQ+MpH4StHTBiFDzDpn4136pG00bIVZJmOUiUheRl6bOU0fWTVU+PgeNNxAK/EHL7yUfjKQeEDzPl3wlb96+gTshXmmo5yyrrtWqZvtqzVTZEduck7UM0iAhjhKw8/dcpRj8IHGDG66UbdceQp2YryTUepNoEFObp/1Q8alx+uFqGNTMcBvAandMtH4SsHI3xA7Xuh2VoNO/iMbK5C01FqRId9azVhwzL9I6KD/Ox+puMAHo9TuuWj8JWDwgfUrrdarNDQAy/IZrlMR6lR/kX5umv1NH2d5VTbsCam4wAejRG+8lH4ykHhA2rPBy2W6JJ9r8gmy3SUWtPq4EZ9uW6R7g1rx62hgCpihK98FL5y1A11ysZqCkCN+zxxvs7b96bpGEY4rCLdvHaGJqW71CWihek4gMcJd3JrtfJQ+Mrh77ArKjjAdAzAq01K/Em99r5nOoZxTY5s19jVc/RQSGsF+wWbjgN4BJtsnNKtAApfBbD4MlBzvk+cpq57PzEdw23YZOna9bP0XXK2zopsZToO4PZiQ2Llb+c2qOWh8FVAvXAKH1DdbDZLsxK/U4e9X5iO4pbqp+7Rf1f9pKeCWio8IMx0HMBtJYQlmI7gESh8FcAIH1C9/O2W5jSfoJZ7J5qO4vYGb/hZk5OOql9UW9NRALfUOLyx6QgegcJXATGM8AHVxml3aW7TcWqyb4rpKB4j5thBvb5ypl4OaKo6zijTcQC3khDOCF9FUPgqIKFOiOkIgFcIcbg0v8lYNdg/w3QUjzRg8zxN2bNXF0W1Nx0FcBsUvoqh8FVA8xgKH3CqIvwLNb/x+4o98LPpKB4tMjtFz6+crv/YGyo2qK7pOIBxnNKtGApfBTSvF2o6AuDRogMKNL/+O4pOmm86itc4Z/tiTd6xTVdEdZBNLBYK3+SwOdSI+1JXCIWvAuqGOhUZzCXfQFXEOfM1L+5NRRxaYjqK1wnNPabRK6fpQ6ueGgXHmY4D1Lr4kHj5O/j9XBEUvgpqHsMoH1BZjYNyNTvmVYUeXmE6ilfrvmuZvtm6XjdGdpTdxo91+A7m71Wcn+kAnqJ5TIhW7E41HQPwGIkhOfo+4mUFJm80HcUnBOVn64FVP+j8Rp00OjJE2zP3mY7kdopyinT428M6tvKYCo8VKjAhUPHXxiu42YnvapK+PF0pc1KUuydXVoElZwOn6g2up7AO/1sXMW1xmg5OOihXrktRvaIUf018ycfyj+Rr18u71HxMczmCHDX++fki5u9VHP8VrCBG+ICKaxeWpWnhzyswhbJX2zrtXaOJG5brtogO8rPzf/q/2v/JfmX+nqmGtzVUi6dbKLRdqHa9tEsFqQUn3D57c7ZC24Uq4d4ENR/TXCFtQrTn9T3K2Z0jSSrMKNT+T/Yr/qp4Nbm/idIWp+nY6mMlrz/w+QHFXhlL2atBjPBVHIWvgih8QMV0icjQ5OBnFJC61XQUn+VflK9/rp6mr7MC1Sasiek4bsGV79Kx5ccUNzROIa1C5Ix1KvayWAXUC1DK7JQTvib+unjFXBij4GbBcsY5FXdFnAJiA5SxOkNS8QieI8ihiDMiFNwsWCFtQpR3IE+SlLYkTTaHTRFducdrTaLwVRyFr4JacKUuUK4eUemaEPCk/NN3mY4CSa0ObtCX6xfr7rB2cjp8ewF5q8iSXJItoPQVzfYAu7K2ZFVsHy5LrlyXHCHFI3bOWKdc+S7l7M5RYWahcnbmKLBRoIqyik8dx18fX84ecaq4rVrFMd5fQY3qBCvAz678QpfpKIBb6hudqg/0lBwZB01HwV/4uQp1y9oZ6hfTXKMbtNCq9G2mIxnhCHIoqEWQDk85LGe8U34Rfkpfkq7sbdkKiA2o0D6SZybLledSRPfiUTtHiEMNb22ofR/sk5VvKfKsSIV1CNO+j/apTr86Kkgu0J439sgqslRvcD1FdGO0rzr52f1UP7S+6Rgeg8JXQQ67TU2ig7XlUKbpKIDbuTAmWW8XPil7TrLpKDiJpke2a2zyTn3V/jy9kbtLOYU5piPVuoa3NdT+j/Zr872bJbsUlBCkiDMjlLsrt9zXpv2apsOTDyvh7gT5hf/vV2f46eEKPz285HHWpizl7ctT/evra8uDW9ToH43kF+Gn7U9uV0irkFKvxalpGNpQDjvzIyuK77xKaB4TSuED/uby2MN6OW+M7LlppqOgHHbLpevW/ahz6zTWEwmt9GvaZtORapWznlPNHmomV55LRTlF8o/015539sg/pux13NKWpGn/J/vV+M7GCm138uk9rgKXDnx2QA1va6j8w/myiiyFtC6+U5Mzzqns7dkKPy38pK9H5TB/r3KYw1cJXLgBlHZd/AG9kvsYZc/DNEjZo/dX/aQng1oqzN/3fq7ZnXb5R/qrKKtImesyFd7l5CUsbUma9n+0X43+0UhhncNOup0kHZl6RKEdQhXUJEiWq3jO4J+swtKPcepYkqVyKHyVwIUbwP+MaLBXT2eOli0vw3QUVNFlG37WlIMp6hPV1nSUWpGxLkMZazOUfyRfmesztfP5nXLGOxV1dpQk6eDEg9r3/v/WL0z7NU37PtinuKvjFNQsSAVpBSpIK1BRdtFx+87dn6v039IVe3msJMkZ75RsUsq8FGWszlBeUp6CmgXVzifqI5pHNDcdwaNwSrcSKHxAsX823ql/pTwlW2H5c5/g3mKOHdSbK2dqZqvees6WqpS8NNORaowrx6WDEw+qMLVQjhCHwruGK3ZIrGx+xVfuFqYVKv9ofsn2KXNTpCIp6fMkJX2eVPJ8ZM9INby1Ycljy7J0YOwBxV0TJ7uzeBzFHmBXg1saKOnzJFkFluJviJd/FLcAq04dYzqajuBRbJZlWaZDeIqCIpfaj/5ReVypCx/274StuiP5GdmK8svfGB4lNSRaz7c6Q9NT15uOApQp1D9Ui65ZxK0EK4GvVCX4O+zq0IDL6uG7RjfdqDuOPEXZ81JRWUf1wsrpetvRSPUC65qOA5xU+7rtKXuVxFerkk5rHGk6AmDE883WadjBZ2RzFZqOghrWe9siTd65XUOiOpiOApwQp3Mrj8JXSac1jjIdAah1b7ZYoasOPC+bxXQGXxGWm64xK6fpQ8WqYXCc6ThAKZ1iOpmO4HEofJXUhcIHH/N+iyUatO8V2cR0X190xs5l+nbrel0f2ZFTaHAbFL7K419vJcVFBCo+ItB0DKBWfJ44X+fve9N0DBgWlJ+tB1f9oE8LItUstGH5LwBqUEJ4giKczKevLApfFTDKB18wKfEn9dr7nukYcCOd967WxA0rdGtEB/nZWNULZjC6VzUUvirgwg14u+8Tp6nr3k9Mx4AbCijK06jV0/RVTqDahHFrK9S+jnW5YKMqKHxVQOGDt7LZLM1K/E4d9n5hOgrcXOukDfpy/a+6O7y9AuwBpuPAh3CFbtVQ+KqgfYMIBTj40sG7OGwuzW4+US33TjQdBR7Cz1WoW9ZM18QMqXM4t7lCzQvyC1LLqJamY3gkWksVOP0calP/5DfbBjyN0+7SvOZfqum+yaajwAM1O7xNn66dp/8LbasgP+4Xi5rTLrqdHHaH6RgeicJXRV04rQsvEeJwaX6TsWq4b7rpKPBgdsul69bN1LdHc3RmZCvTceCluGCj6ih8VcQCzPAGEf6Fmt/4fcUe+Nl0FHiJhil79MGqn/REUEuF+YeajgMvw/y9qqPwVdFpjSJNRwBOSXRAgebXf0fRSfNNR4EXunzDz5p8KFXnRrY1HQVehMJXdRS+KmpUJ1hx4SzADM8U58zXvLg3FXFoieko8GL10pP01qqZetHZTFEBLJSLU9MgtIHqBtU1HcNjUfhOwdmJfOPB8zQOytXsmFcVeniF6SjwEQM3zdWUfQc0MKq96SjwYMzfOzUUvlPQi8IHD9M8OEezol5ScPJa01HgY6KyjurFldP1lqOx6gVGm44DD3RW/bNMR/BoFL5T0CsxRnab6RRAxbQLy9KMiOcVmLLRdBT4sHO3LdTknTs0JKqD6SjwIDbZ1LNBT9MxPBqF7xTUCQlQu/rMS4H76xKRocnBzyggdavpKIDCctM1ZuU0faA4NQiONR0HHqB1ndbM3ztFFL5TxGlduLseUemaEPCk/NN3mY4ClHLmzt/07dYNuj6qo+w2fh3h5M5ucLbpCB6Pf2GnqFdijOkIwEn1jU7VOPsT8svYbzoKcELB+Vl6cOUP+rQgSk1DGpiOAzdF4Tt1FL5T1LVJlEICuM0L3M/AmGR9aI2WI+ug6ShAuTrvXaVJG1fq1ogO8rP5mY4DNxIWEMYVutWAwneK/B12lmeB27k89rD+UzBa9uxk01GACgsoytOo1dP0ZU6gWoclmI4DN3Fm/JncP7caUPiqQb/WTDqG+7gu/oBeyX1M9txU01GAKmmTtEFfrf9Vo8LbK8AeYDoODOvVoJfpCF6BwlcN+rSuJxvLs8ANjGiwV09njpYtL8N0FOCU+LkKdeua6ZqYYVOn8Oam48AQm2zM36smFL5qEBPmVMcGLM8Cs/7ZeKceTR8tW0GW6ShAtWl2eKs+WztPD4a2VZCD21n6mg51OygmmIsjqwOFr5r0aV3PdAT4sH8nbNW/jj4hW2Gu6ShAtbNbLl2/bqa+TcnVGZEtTcdBLerTuE+tHu/gwYO6++671aJFCwUGBio2NlY9e/bUu+++q+zs7FrJ0KRJE73++uvVvl8uhaom/VrH6vWfWdQWte/xphs1/NBzsrkKTUcBalTDlD36MGWPvmnXX68UHFBGQabpSKhhfRv1rbVj7dixQz179lRkZKSeffZZdejQQU6nU+vWrdP777+vBg0aaNCgQbWWp7oxwldN2jcIV2y403QM+Jjnm63T8IPPUPbgU4b8/rO+O5Smc6PamI6CGtQkvImaRTartePdeeed8vPz0/LlyzV06FC1adNGzZo106WXXqpp06bpkksukSSlpaXplltuUUxMjMLDw9W3b1+tWbOmZD9r1qxRnz59FBYWpvDwcJ1++ulavnx5yccXLlyoXr16KSgoSI0aNdKoUaOUlVU8Fefcc8/V7t27de+998pms8n2xwUC5557bsnjv77t2rWrwp8fha+a2Gw2DWwfbzoGfMibLVboqgPPy2a5TEcBal1s+gG9tfJHveBsrqgA5lB7oz6Nau907tGjRzVr1izdddddCgkJOeE2f5avK6+8UocPH9aMGTO0YsUKdenSRf369VNKSook6brrrlPDhg21bNkyrVixQv/3f/8nf39/SdL27dt1wQUXaMiQIVq7dq3Gjx+vhQsXauTIkZKkb7/9Vg0bNtSTTz6ppKQkJSUllTz/5+OkpCRdfvnlatWqlWJjK75KCKd0q9Glnetr7OJdpmPAB7zfYonO3/em6RiAcRdumqMzQ+rquVbdNDP1d9NxUI1qc/7etm3bZFmWWrVqVer5unXrKje3eG70XXfdpUsuuUS//fabDh8+LKez+Kzeyy+/rMmTJ2vSpEm67bbbtGfPHj3wwANq3bq1JCkxMbFkf88995yuu+463XPPPSUfe/PNN9W7d2+9++67qlOnjhwOh8LCwhQXF1fyujp16pT8+bXXXtPs2bO1dOlSBQUFVfhzZISvGp3WOEoJ0cGmY8DLfZ44n7IH/EWdrGS9tHKG3vBLUL3AaNNxUA3qBNZxi7tr/Pbbb1q9erXatWunvLw8rVmzRpmZmYqOjlZoaGjJ286dO7V9+3ZJ0r/+9S/dcsst6t+/v55//vmS56Xi071jx44t9doBAwbI5XJp586d5eaZMWOG/u///k/jx49Xy5aVu4CJEb5qdmmn+npz9jbTMeClJib+rG57PzYdA3BLfbcuUNegCL3S5mx9m7rOdBycgj6N+shuq70xqRYtWshms2nz5s2lnm/WrHgO4Z8jaZmZmYqPj9fcuXOP20dkZKQkacyYMbr22ms1bdo0zZgxQ6NHj9bXX3+tyy67TJmZmbr99ts1atSo417fuHHjMjNu2LBBV199tZ5//nmdf/75lf4cbZZlWZV+FU5q2+FM9X91nukY8ELft5yuDnvGmY4BeIRfm3bXE8GW9mcfMh0FVfDxgI/VLa5brR5zwIAB+v3337V58+bj5vGde+656ty5sy666CINHDhQ27ZtU5MmTSq032uuuUZZWVmaOnWqrrvuOh06dEg///zzSbdv2bKlbr/9dt13330lzyUnJ+uMM85Q79699fHHVftPP6d0q1mLeqFqVz/cdAx4EZvN0o+Jkyl7QCX02Pmbvt26QddFdqzVkSKcuoahDdU1tmutH/edd95RYWGhunbtqvHjx2vjxo3avHmzxo0bp02bNsnhcKh///7q0aOHBg8erFmzZmnXrl1avHixHnnkES1fvlw5OTkaOXKk5s6dq927d2vRokVatmyZ2rQpvqL8wQcf1OLFizVy5EitXr1aW7du1ZQpU0ou2pCK1+GbP3++9u/fr+Tk4vuhDxkyRMHBwRozZowOHjxY8lZUVFThz48Rvhrwwfwdemb6RtMx4AUcNpd+bj5JTfdNNh0F8FirGp2mxyMCtStrv+koqIC7Ot+lf3T6h5FjJyUl6dlnn9W0adO0b98+OZ1OtW3bVldeeaXuvPNOBQcHKyMjQ4888oi++eYbHTlyRHFxcTrnnHP03HPPKTY2VjfddJMWLVqkQ4cOqW7durr88sv10ksvKTCw+E4xy5Yt0yOPPKJff/1VlmWpefPmuuqqq/Twww9LkpYsWaLbb79dmzdvVl5enizLKrlC+O927txZ4ZFGCl8NOJieq7Oe/0UuvrI4BU67S780+1IN9003HQXweHl+gXq3Qz99mr5RhRbrVrorm2z6cciPig9lmbPqxjh3DYiLCFT3pnXK3xA4iRCHS/ObjKXsAdXEWZire1ZN0xe5QWoVlmA6Dk6ie3x3yl4NofDVkMGdG5iOAA8V5leo+Y0/UOyBk0/qBVA1bQ/8rq/WL9HI8PYKsAeYjoO/GdxisOkIXovCV0MGdohXgIMvLyonOqBACxq+q+gkrvQGaoq/q0C3r5muiRk2dQxvbjoO/hDmH6b+jfubjuG1aCQ1JCLIX71bxZiOAQ8S58zX3Li3FHnwV9NRAJ/Q7PBWfb52nh4IbasgR6DpOD7v/CbnK9CPv4eaQuGrQZzWRUU1DsrV7JhXFXZ4efkbA6g2dsulG9fN1Dep+eoeUbk7F6B6cTq3ZlH4alC/NvUU6uRmJihb8+AczYp6ScHJa01HAXxWo6O79OHqX/R4cCuF+oeU/wJUq6YRTdW5XmfTMbwaha8GBfo7NKhzfdMx4MbahWVpRsTzCkxh3UbANJssXfn7T/ru8DGdE9nGdByfcmnzS01H8HoUvhp2Yw8u/8eJdYnI1OTgZxSQutV0FAB/EZe2X/9Z9aOeczZXZECE6Thez2Fz6JLml5iO4fUofDWsdVy4zmBNPvxNj6h0TQh4Uv7pu0xHAXASF2+ao8n7D2pAVDvTUbxaj/o9VC+4nukYXo/CVwtuOquJ6QhwI+fWSdU4+xPyy9hnOgqAckRnHtHLK2fodb8ExQTyn/eawMUatYPCVwvObxur+AguNYc0MCZZH2u0HFkHTUcBUAn9ti7Q5F07NTiqg+koXiXCGaE+jfqYjuETKHy1wM9h13VnNDYdA4ZdHntY/ykYLXt2sukoAKogPCddT62cpv/a6qt+EKcgq8PAJgMV4OCOJ7WBwldLruneWAF+fLl91XXxB/RK7mOy56aajgLgFJ21Y4m+275J10R2lE0203E82pCWQ0xH8Bk0kFoSHerURR24IbQvGtFgr57OHC1bXobpKACqSXBeph5e9YPGFkWrSQjLb1VFj/geal2ntekYPoPCV4u4eMP3jGy0S4+mj5atIMt0FAA1oMuelZq0abVujuwgh81hOo5HGd5+uOkIPoXCV4s6N4pUp4as6eQr/p2wVfeljJGtMNd0FAA1yFmYq3tXTdMXuSFqGcp87YpoU6eNetTvYTqGT6Hw1bIbezQxHQG14PGmG3XHkadkK8o3HQVALWl3YL2+/n2p7gpvL3+7v+k4bu3m9jebjuBzKHy17OJO8YoO4Yokb/Z8s3UafvAZ2VyFpqMAqGX+rgL9Y810Tcj0U8fwZqbjuKWGoQ11XsJ5pmP4HApfLXP6OXR190amY6CGvNliha468Lxslst0FAAGtTi0WZ+vna/7w9op0OE0Hcet3NTuJjnszHesbRQ+A64/M0F+di7l9zbvt1iiQftekU2W6SgA3IDdcummtTP0bWqBukUkmo7jFuoE1uHOGoZQ+AyIjwjSoE5cxu9NPk+cr/P3vWk6BgA31OjoLn20erYeC26lUP8Q03GMuqb1NQr0485TJlD4DPlnv0Q5GOXzChMTf1avve+ZjgHAjdlkaejvP+m7w8fUK7KN6ThGBPkF6ZrW15iO4bMofIY0rRvCKJ8X+L7ldHXb+7HpGAA8RFzafr2z6kc9G9hCkQG+tUzXkMQhinD61ufsTih8Bo3s24JRPg9ls1n6MXGyOuwZZzoKAA90ycbZmrz/oM6Pamc6Sq3ws/npxrY3mo7h0yh8BjWPCdUlHbndmqdx2Fya3XyiWu2dYDoKAA8WnXlEr6ycodf9ElTXWcd0nBo1sOlAxYfy+84kCp9hI/smikE+z+G0uzSv+Zdqum+y6SgAvES/rQs0efcuXRrVwXSUGsNt1Myj8BnWol6oLu7IXD5PEOJwaX6TsWq4b7rpKAC8TEROmp5eOU3v2eqrflA903GqVa8GvZQYxbI0plH43MCofozyubswv0LNb/yBYg/8bDoKAC/Wc8cSfbd9k66O6iibvOMXA6N77oHC5wZa1AvVRYzyua3ogAItaPiuopPmmY4CwAcE52XqkZU/6JOiukoI8ezfDZ1iOqlbXDfTMSAKn9sY1bcFo3xuKM6Zr7lxbyny4K+mowDwMafvWaFvNq3W8MgOctg881Zk/zr9X6Yj4A8UPjeRGBumgR24gsmdNA7K1eyYVxV2eLnpKAB8lLMwV/9aNU1f5IUqMbSx6TiV0q9xP3WJ7WI6Bv5A4XMjd/dLlI1RPrfQPDhHs6JeUnDyWtNRAEDt9q/T+N+X6s6IDvK3+5uOUy4/u5/uPf1e0zHwFxQ+N9IyNkwXtmeUz7R2YVmaEfG8AlM2mo4CACX8XQW6Y/U0Tcj0U4fwZqbjlOnKllcqITzBdAz8BYXPzdzTn3vsmtQlIlOTg59VQOpW01EA4IRaHNqsz9cu0P1hbRXocJqOc5ww/zDd0ekO0zHwNxQ+N5MYG6Zru3vWPA1v0SMqXRMCnpR/+k7TUQCgTA6rSDetnalv0grVNcK91rgb0WGEogKjTMfA39gsy7JMh0BpqVn5OvfluUrPKTAdxWecWydVH9mekiProOkoAFAplmya2P48vZq3R1mF2UazxIfE6/vLvpfTDUcefR0jfG4oKiRA9/R3r/+xebOBMcn6WKMpewA8kk2Whq6fpclHMnV2ZGujWf552j8pe26KwuembjgzQS3qhZqO4fUujz2s/xSMlj072XQUADglcWn79O6qWXo2sIUiAsJr/fhto9vq4mYX1/pxUTEUPjfl57DrsYvbmo7h1a6NT9IruY/JnptqOgoAVJtLNs7W5P2HdV5U7f4Oub/r/bKxtpjbovC5sd4tY9S3tXfdRNtdjGiwV89kPi5bXobpKABQ7epmHtarK2fqVf8E1XXWqfHj9W7Ym1uouTkKn5t79KI28nfwP6bqNLLRLj2aPka2gizTUQCgRp23ZYEm796lQVEdauwYfjY//asrt1BzdxQ+N9csJlQ39WhiOobX+HfCVt2XMka2whzTUQCgVkTkpOmZldP0rr2B4oNiqn3/lydermYR7r0QNCh8HmFU/0RFhwSYjuHxHm+6UXcceUq2onzTUQCg1p29/Vd9t32LrorqIJuq58xRiH+I7ux8Z7XsCzWLwucBwgP99a/zW5qO4dGeb7ZOww8+I5ur0HQUADAmJC9Dj66cpo9ddZUQUv+U9ze83XBFB0VXQzLUNAqfh7imW2O1ia/9y+y9wRvNV+qqA8/LZrlMRwEAt9B19wpN2rxGwyI7yGFzVGkfjcIa6aZ2N1VzMtQUCp+HsNttepxlWirtvy2W6tL9L8smbigDAH8VWJCj+1ZN07i8ULUIbVTp1z925mMK9AusgWSoCRQ+D9KjebQu7hhvOobH+CxxgQbse8N0DABwa+33r9OE33/TnREd5Gf3q9BrBjUfpB71e9RwMlQn7qXrYY5m5um81+YrJYsLD8oyMfFnddv7sekYAOBRtsa20uNxcVp/bOdJt6kTWEdTLp2iyMDI2guGU8YIn4eJDnVqzKB2pmO4te9bTqfsAUAVJB7arHFrF+pfYW0VeJJ74j7Q7QHKngei8HmgQZ3q6/y2saZjuB2bzdKPiZPVYc8401EAwGM5rCINXztTk9KKdHpEYqmP9WzQk/vleihO6Xqowxm5Ov+1+UrLLjAdxS04bC793GKSmu6dbDoKAHgNSzaNb3+eXs/bI5csfXfpd2oQ2sB0LFQBhc+DfbNin+6buMZ0DOOcdpd+afalGu6bbjoKAHilpKhG2tD/EfVrd43pKKgiTul6sCGnN1SfVtV/mxxPEuJwaV6TTyl7AFCD4kPi1a/NVaZj4BRQ+Dzcc5d3VFhgxS6j9zZhfoWa3/gDxR34yXQUAPBefoHS4HckO5XBk/G35+HiIgL16EVtTMeoddEBBVrQ8F1FJ80zHQUAvFufR6S6ieVvB7dG4fMCV3VrrF6JdU3HqDVxznzNjXtLkQd/NR0FALxbw+5Sj5GmU6AaUPi8xPNDOirU6f2ndhsG5ml2zGsKO7zcdBQA8G6cyvUq/C16iQaRQfq/ga1Nx6hRzYNz9HP0SwpO5spkAKhxfR/jVK4XofB5kevOaKwezaJNx6gRbUKzNSPieQUe3WA6CgB4v8TzpR53mU6BasQ6fF4mKT1HF76xQKletCBzl4hMjQ98Tv7pJ7+3I/B3zy3I07ebCrQp2aUgP5vOauTQC/2dalXXUbLNwUyXHvgpTz9tL1RGvqVW0XY90supIW39y9z3/mMuPfhznmZsK1R2gaUWdez65NIgda1fvO+XF+fpxUXF97t+sGeA7jvrf7eoWrqvUHdOz9XSW0LkZ7fVwGcOnKKweOkfi6QQ7xxA8FWM8HmZ+IggvTq0s2xe8nukR1S6JgQ8SdlDpc3bXai7ugVoyYgQ/XRDsApc0vnjspWV/7//4974XY42Jxdp6jXBWndHqC5v46+hk3K0KqnopPtNzbHU8+Ms+TukGdcFa8OdoXrl/EBFBRb/o1t7qEiPz8nT11cE6ashQXp0Tp7WHSreX6HL0j+m5eq9i4Ioe3BPNrt0+QeUPS9E4fNCfVrX023nNDMd45SdWydV4+xPyC9jn+ko8EAzrw/RsM4BalfPoU5xDo29NFB70i2t+EuZW7y3SP/sHqDuDRxqFmXXo+c4FRloK7XN372wKE+NIopH9Lo3cKhplF3nN/dT8zrFP043JbvUMdahvk391K+ZnzrG2rUp2SVJemlRvs5p7KduDRwn3T9gVK/7paa9TKdADaDweakHzm+lrglRpmNU2cCYZH2s0XJkHTQdBV4iPa/4fZ2g/42sndXIofG/Fyolx5LLsvT1+gLlFlo6t8nJr3ifurlQXeMdunJituq9lKHT/pupD1bkl3y8Qz27thwt0p50l3anubTlqEvt69m1PcWlT1YX6Om+zpPuGzAqoad07v+ZToEawhw+L5aUnqOL3lyolKz88jd2I4NjD+vVvCdkz001HQVewmVZGvRVjtJyLS28OaTk+bRcS1dNytas7UXys0vB/tLEK4N1fvOTF77Ap49Jkv7VI0BXtvXXsgNFuntmrt67KFA3dQ6QJL23PF+vLSn+d3fvmQH6R9cA9f8sSyO7B6jQJY2Zmyd/h/TGBYE6J8H7l1OCBwiqI/1joRTRwHQS1BB+0nix+IggvTK0k24eu0yeUuuvjU/SM9lPyJZ3zHQUeJG7puVq/eGiUmVPkh6bnau0XEs/3xCsusE2Td5UqKETs7VgeIg6xJ74tKvLkrrWd+jZfoGSpNPiHVp/2KX3VhSUFL5/dC0ueX/6dHW+wpw29WjoUKu3M7Xs1hDtO2bp6kk52nl3qJx+zOeDYYPfoex5OU7perk+rerpH72bm45RISMa7NUzmY9T9lCtRk7P0Q9bCzXnphA1DP/fj7ztKS69vaxAHw8KUr9mfuoU59Doc53qWt+h/yw7+ah4fJhNbWNK/+hsU9euPemuE26fnO3SE/Py9NbAQC3dX6SW0XYlRjvUp6mfClzSlqMnfh1Qa864Q2o10HQK1DAKnw+4//xW6tbEvefzjWy0S4+mj5GtIMt0FHgJy7I0cnqOvttUqNk3BqtpVOkfd9kFxcPef79Y1mEvHsU7mZ6NHNr8t5K25ahLCREn/nF67495uvdMpxqG21Xkkgr+8tJCl6UiDxl9h5eK7yyd96TpFKgFFD4f4LDb9NY1XVQnJKD8jQ34d8JW3ZcyRrbCHNNR4EXump6rcWsL9OXlQQpz2nQw06WDmS7l/FH0Wte1q0Udu27/IVe/7S/S9hSXXlmcp5+2F2lw6//Ndun3WZbe/u1/I373nunUkn1FenZBnraluPTlugK9vzJfd3U7/t/XT9sLteVoke7qXryuX7cGDm1KdmnG1gK9vyJfDptNraL5MQxDAsKkKz6W/NzzdwOqFxdt+JC5mw9ruJvN53u86UYNP/ScbK5C01HgZWxPnHhqwCeXBmrYH3Ptth4t0v/9kqeFe4qUmV+8gPL9PQJ0Q6f//QJs8nqGhnX215hzA0ue+2FLgR76JU9bj7rUNMquf50ZoFtPL/1LM6fAUuf/Zmn8FUHqHPe/+YAfrszXo7Pz5PST3rkwUBe1LHuRZ6DGDPlI6nCF6RSoJRQ+H/PizE16Z+520zEkSc81W6erk16UzTr5mmcAgBrQ825O5foYziX4mPvOb6XuTeuYjqE3mq/U1Qeep+wBQG1reYHUb4zpFKhlFD4f47Db9J9ru6hBZJCxDP9tsVSX7n9ZNjG4DAC1KqaNNORDyc6vf1/D37gPiglz6uNh3RTmrP1lGD9LXKAB+96o9eMCgM8LqiNd+7XkDDOdBAZQ+HxUq7gwvX1dFzlq8QbuExN/1jl736214wEA/mD3l4Z+JkU1MZ0EhlD4fFjvljEaM6hdrRzr+5bT1W3vx7VyLADA31z4otS0l+kUMIjC5+NuODNBw3s2qbH922yWfkycog57xtXYMQAAZeh2q9T1ZtMpYBjLskAul6VbP1uuXzYdrtb9Omwu/dxikprunVyt+wUAVFDT3tL130qO2p+zDffCCB9kt9v05jWnqW18eLXt02l3aV7zLyl7AGBKnWbS0E8pe5BE4cMfQpx++mhYV8WGO099Xw6X5jX5VA33Ta+GZACASnNGSNeMl4Lc+z7qqD0UPpSIjwjSRzd1U3CAo/yNTyLMr1DzG3+guAM/VWMyAECFOQKkoWOlmJamk8CNUPhQSvsGEXr9qs6qymot0QEFWtDwXUUnzav+YACA8tns0uXvS837mk4CN0Phw3HObxen/xvYulKviXPma27cW4o8+GsNpQIAlOvi16R2l5lOATdE4cMJ3XZOc11/ZuMKbdswME+zY15T2OHlNZwKAHBS/R6XTh9mOgXcFIUPJ/XkoPYa3Ll+mds0D87Rz9EvKTh5TS2lAgAcp8dIqdd9plPAjbEOH8pUWOTSHV+s1E8bDh33sTah2ZoS9oICUrcaSAYAkCR1vl4a/B/TKeDmGOFDmfwcdr197Wnq2SK61PNdIjI1NeQZyh4AmNT6YmnQm6ZTwANQ+FAup59DH9zYVV0aR0qSekSla0LAk/JP32k2GAD4sqbnSFd8LNmrvpQWfAendFFh6TkFen38dD165N9yZB00HQcAfFf906SbvpecYaaTwENQ+FA5WcnS2IulIxtNJwEA31S3pTR8phQSXf62wB84pYvKCakr3TS1+AcOAKB2RTWVbphM2UOlUfhQeaH1ik8lRLcwnQQAfEfdltLwGVJEA9NJ4IEofKiasLji0hfV1HQSAPB+9dpJw6ZL4fGmk8BDUfhQdeH1pWE/SJEJppMAgPeK71T8szY0xnQSeDAKH05NREPp5plS3VamkwCA92nYrfhsSnAd00ng4bhKF9UjO0UaN0Q6sNJ0EgDwDglnS9eOl5yhppPAC1D4UH3yMqWvr5V2zjOdBAA8W7M+0jVfSf5BppPAS3BKF9XHGSpdN7H4Vj8AgKppeUHxyB5lD9WIwofq5eeUhn5WfDNvAEDltBkkXTWu+GcpUI0ofKh+dod06dtSj5GmkwCA5+hwpXTlWMnhbzoJvBBz+FCz5r8szX7KdAoAcG89RkrnPSXZGYdBzaDwoeYt+0iafr9kuUwnAQD3YnNIA1+Qut9qOgm8HIUPtWP9N9K3t0uuAtNJAMA9BIRKV3witTzfdBL4AAofas/22dLEYVJuuukkAGBWWLx07QQpvqPpJPARFD7UruSt0pdXSSnbTScBADNi2xeXvYgGppPAh1D4UPtyUotH+nbMNZ0EAGpXi/7FV+I6w0wngY/hciDUvqAo6bpvpG5MUgbgQ04fLl0znrIHIxjhg1nLPpJm/FtyFZpOAgA1xCad94TU827TQeDDKHwwb+d8acKNxad6AcCb+AVKl/1XajfYdBL4OAof3EPKDumra6Qjm0wnAYDqEZlQfKvJ+p1NJwEofHAjucekb0ZIW2eZTgIAp6blQOmy96SgSNNJAEkUPrgbl0v66THp17dNJwGAyrM5pL6PSGf/S7LZTKcBSlD44J7WTZK+v0fKzzCdBAAqJiRGuuJjqek5ppMAx6HwwX2l7JAmDpeSVptOAgBla9yj+DZp4fGmkwAnROGDeyvMl34eLS15x3QSADixHiOl/k9IDj/TSYCTovDBM2yeIU2+U8pJMZ0EAIo5w6VL35baXmo6CVAuCh88R/p+6ZtbpD2LTScB4OvqtZOu+lyKbm46CVAhFD54FleRNPc5acErkuUynQaAL+pyo3TBC1JAsOkkQIVR+OCZdsyVvr1NyjxkOgkAXxEaJw16U2o5wHQSoNIofPBcmUek726Xtv9iOgkAb9fucumiV6TgOqaTAFVC4YNns6ziK3h/eUoqzDGdBoC3CYoqLnrth5hOApwSCh+8w9Ht0tRR0u6FppMA8BYtziu+CjcsznQS4JRR+OA9LEta/pH00xju0AGg6gJCpQHPSKcPM50EqDYUPniftL3S93cztw9A5SX0lAa/I0U1MZ0EqFYUPnivVV9IPz4s5aaZTgLA3fkFSn0fk868U7LbTacBqh2FD94t46A07T5p0w+mkwBwVwk9pYtfk2JamU4C1BgKH3zD+m+k6f+WspNNJwHgLoKjpfOekk67znQSoMZR+OA7so5KMx+U1k00nQSAUTbptOul855kXT34DAoffM/O+dLMh6RD600nAVDb6rUtPn3b+EzTSYBaReGDb3IVSSs+keY8K2UfNZ0GQE1zRkjn/p/U/TbJ4Wc6DVDrKHzwbTlp0tznpWUfSK5C02kAVDub1Pk6qf8YKTTGdBjAGAofIElHNhcv4bLtZ9NJAFSX+qdJF74sNexqOglgHIUP+KstPxYXv6PbTCcBUFVh9aU+D0mdr2dNPeAPFD7g74oKpKXvSfNekvLSTacBUFFBUdLZ90rdb5f8A02nAdwKhQ84maxk6ZcnpVXjJKvIdBoAJ+MfIp15h9RzlBQYYToN4JYofEB5jm6X5r1YvH4fxQ9wH44A6fRh0jkPSKH1TKcB3BqFD6io5K3SvBeK79phuUynAXyXzS51uFLq87AU1cR0GsAjUPiAyjqyubj4/f4dxQ+obS0HSv0el2Lbmk4CeBQKH1BVhzcWr+G3YYok/hkBNSqhp9RvtNT4DNNJAI9E4QNO1aHfi4vfxu9F8QOqk01qeYHU824poYfpMIBHo/AB1eXguuLit2maKH7AKXAESB2GFl91G9PKdBrAK1D4gOp2eKO05F1p7QSpMMd0GsBzOCOkrsOkM+6QwuNNpwG8CoUPqCnZKdKKT6TfPpQyDphOA7ivsPrSmf+QTh8uBYabTgN4JQofUNOKCqUNk4tH/fYvN50GcB8xbaSz/il1HCo5/E2nAbwahQ+oTXuXSUvekTZOlVyFptMABtikJmdLPUZKLQdINpvpQIBPoPABJqTvl5Z9IK0YK+Wkmk4D1LyQelLna6UuN0rRzU2nAXwOhQ8wKT9bWju+eK5f0hrTaYDqZbNLzfsVl7xWAzltCxhE4QPcxcF10qovpHUTpOyjptMAVRfeUDrt+uK3yEam0wAQhQ9wP4X50pYZ0qpx0rZfJKvIdCKgfHa/4kWSTx9WPKpnt5tOBOAvKHyAO8s4KK2bVHza9+Ba02mA40UnFs/N63ydFBZrOg2Ak6DwAZ7i8Kbi4rduopS+13Qa+LKY1lLbS6W2g6XYtqbTAKgACh/gaSxL2r1I2jBV2jyd8ofaUa9tccFre6lUr7XpNAAqicIHeLqktcXFb9M0TvuiesV2KC547QZLdRNNpwFwCih8gDdJ2yttnlFcAHctlFwFphPB08R1LC54bQezXh7gRSh8gLfKTZe2/lRc/rb+LOWlm04EdxRUR2rWW2rWR2reR4psbDoRgBpA4QN8QVGBtGtBcfHbvbB4zT/LZToVTHA4pcZn/K/gxXViCRXAB1D4AF+Umy7t/rW4/O1aVHyXD9b781I2KbZ98She8z5SQk/JP8h0KAC1jMIHQMrLkPYsKZ73t2uhlLRachWaToUqsUnRLaRG3YtH8Zr1lkLrmQ4FwDAKH4Dj5WVKe5cWL/+ye3HxlcAFWaZT4UTC6ksNuvzxdrpU/zQpMMJ0KgBuhsIHoHwul5SyQzq4pnj+38F1xSUw67DpZL4lMEKq/9dy10UKjzedCoAHoPABqLqMQ38UwL8UwaPbJfFj5ZTY/aTIhOK176JbSPGdistddHPJZjOdDoAHovABqF55mdKh36UjG6XU3VLqLintj/fZR02ncy/B0cX3oq3b4o/3icXv6zSVHP6m0wHwIhQ+ALUnL7N0ASxVCHdLhTmGA1Yz/2ApLK54nl1YXPEad3+WurotpKAo0wkB+AgKHwD3YFlS5mEp85CUkyJlp/zxPrV4ZLDUc3+8zz2m2jt9bJP8AouXNHGGSsF1pZCYP97+8ufQmP8VvKDIWsoGAGWj8AHwXK4iKSe1+K0wr/hWckWFxe9dhcULTrsKT/LnguLFp/8scf7Bf/w5+H+P/f/y2C+Q+XMAPBaFDwAAwMtxPx0AAAAvR+EDAADwchQ+AAAAL0fhAwAA8HIUPgAAAC9H4QMAAPByFD4AAAAvR+EDAADwchQ+AAAAL0fhAwAA8HIUPgAAAC9H4QMAAPByFD4AAAAvR+EDAADwchQ+AAAAL0fhAwAfNnbsWEVGRpqOAaCGUfgAoIZccskluuCCC074sQULFshms2nt2rW1nAqAL6LwAUANGTFihH766Sft27fvuI998skn6tq1qzp27Fipfebn51cpS1VfB8A7UPgAoIZcfPHFiomJ0dixY0s9n5mZqYkTJ2rEiBFauHChevXqpaCgIDVq1EijRo1SVlZWybZNmjTRU089pRtvvFHh4eG67bbbJEnffPON2rVrJ6fTqSZNmuiVV14pdYyTvW7s2LFq3LixgoODddlll+no0aOlXjdmzBh17txZn3/+uZo0aaKIiAhdffXVysjIKLXv119/vdTrOnfurDFjxpQ8ttls+vDDD3XZZZcpODhYiYmJmjp1aqnXTJ06VYmJiQoMDFSfPn306aefymazKS0trTJfZgAVQOEDgBri5+enG2+8UWPHjpVlWSXPT5w4UUVFRerRo4cuuOACDRkyRGvXrtX48eO1cOFCjRw5stR+Xn75ZXXq1EmrVq3SY489phUrVmjo0KG6+uqrtW7dOo0ZM0aPPfbYccXy769bunSpRowYoZEjR2r16tXq06ePnn766eNyb9++XZMnT9YPP/ygH374QfPmzdPzzz9f6c//iSee0NChQ7V27VpdeOGFuu6665SSkiJJ2rlzp6644goNHjxYa9as0e23365HHnmk0scAUEEWAKDGbNy40ZJkzZkzp+S5Xr16Wddff701YsQI67bbbiu1/YIFCyy73W7l5ORYlmVZCQkJ1uDBg0ttc+2111rnnXdeqeceeOABq23btiWPT/S6a665xrrwwgtLPXfVVVdZERERJY9Hjx5tBQcHW8eOHSu17zPOOKPUvl977bVS++nUqZM1evTokseSrEcffbTkcWZmpiXJmjFjhmVZlvXggw9a7du3L7WPRx55xJJkpaamWgCqFyN8AFCDWrdurbPOOksff/yxJGnbtm1asGCBRowYoTVr1mjs2LEKDQ0teRswYIBcLpd27txZso+uXbuW2ufGjRvVs2fPUs/17NlTW7duVVFRUZmvO+OMM0o916NHj+MyN2nSRGFhYSWP4+Pjdfjw4Up+5io1PzEkJETh4eEl+9m8ebO6detWavvu3btX+hgAKsbPdAAA8HYjRozQP//5T/3nP//RJ598oubNm6t3797KzMzU7bffrlGjRh33msaNG5f8OSQkpErHrerr/P39Sz222WxyuVwlj+12e6lT1JJUUFBQ6f0AqD0UPgCoYUOHDtXdd9+tL7/8Up999pnuuOMO2Ww2denSRRs2bFCLFi0qtb82bdpo0aJFpZ5btGiRWrZsKYfDUebrli5dWuq5JUuWVOrYkhQTE6OkpKSSx8eOHSs1IlkRrVq10vTp00s9t2zZskpnAVAxnNIFgBoWGhqqq666Sg899JCSkpI0bNgwSdKDDz6oxYsXl1xEsXXrVk2ZMuW4izb+7r777tMvv/yip556Slu2bNGnn36qt99+W/fff3+Zrxs1apRmzpypl19+WVu3btXbb7+tmTNnVvrz6du3rz7//HMtWLBA69at00033VRm0TyR22+/XZs2bdKDDz6oLVu2aMKECSUXndhstkpnAlA2Ch8A1IIRI0YoNTVVAwYMUP369SUVz3GbN2+etmzZol69eum0007T448/XvLxk+nSpYsmTJigr7/+Wu3bt9fjjz+uJ598sqRInsyZZ56pDz74QG+88YY6deqkWbNm6dFHH6305/LQQw+pd+/euvjii3XRRRdp8ODBat68eaX20bRpU02aNEnffvutOnbsqHfffbfkKl2n01npTADKZrP+PhEDAAADnnnmGb333nvau3ev6SiA12EOHwDAiHfeeUfdunVTdHS0Fi1apJdeeqnc09kAqobCBwAwYuvWrXr66aeVkpKixo0b67777tNDDz1kOhbglTilCwAA4OW4aAMAAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvByFDwAAwMtR+AAAALwchQ8AAMDLUfgAAAC8HIUPAADAy1H4AAAAvNz/Ayq9qIU0U6xnAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "source": [
+ "# prompt:\n",
+ "\n",
+ "# Assuming 'df' is already defined from the previous code block\n",
+ "\n",
+ "# Filter the DataFrame for entries where 'meta_initiant' is \"Bundesministerium für Arbeit und Soziales\"\n",
+ "filtered_df = df[df['meta_initiant'] == 'Bundesministerium für Arbeit und Soziales']\n",
+ "\n",
+ "# Extract the titles and print each on a separate line\n",
+ "for title in filtered_df['title']:\n",
+ " print(title) # Added indentation and print statement to display each title on a new line"
+ ],
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "R-XQ7G5SVi1M",
+ "outputId": "94d62053-e158-4cb9-98c0-265b094b1472"
+ },
+ "execution_count": 49,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Fünfzehnte Verordnung zur Änderung der Sozialversicherungsentgeltverordnung\n",
+ "Verordnung zur Änderung der Gefahrstoffverordnung und anderer Arbeitsschutzverordnungen\n",
+ "Fünfte Verordnung zur Änderung der Verwaltungskostenfeststellungsverordnung\n",
+ "Verordnung zur Neufestsetzung der Neurenten-Faktoren und zur Übertragung der Verordnungsermächtigung auf das Bundesamt für Soziale Sicherung\n",
+ "Vierte Verordnung zur Änderung der Verordnung zur Durchführung des Bundesdisziplinargesetzes bei den bundesunmittelbaren Körperschaften mit Dienstherrnfähigkeit im Geschäftsbereich des Bundesministeriums für Arbeit und Soziales\n",
+ "Bekanntmachung der Beitragssätze in der allgemeinen Rentenversicherung und der knappschaftlichen Rentenversicherung für das Jahr 2025\n",
+ "Verordnung über maßgebende Rechengrößen der Sozialversicherung für 2025\n",
+ "Sechste Verordnung über eine Lohnuntergrenze in der Arbeitnehmerüberlassung\n",
+ "Bekanntmachung über die Höhe der Leistungssätze nach § 3a Absatz 4 des Asylbewerberleistungsgesetzes für die Zeit ab 1. Januar 2025\n",
+ "Bekanntmachung zur Umsetzung der Richtlinie (EU) 2022/2041 des Europäischen Parlaments und des Rates vom 19. Oktober 2022 über angemessene Mindestlöhne in der Europäischen Union\n",
+ "Verordnung zur Bestimmung der für die Fortschreibung der Regelbedarfsstufen nach § 28a und für die Fortschreibung des Teilbetrags nach § 34 Absatz 3a Satz 1 des Zwölften Buches Sozialgesetzbuch maßgeblichen Prozentsätze sowie zur Ergänzung der Anlage zu §§ 28 und 34 des Zwölften Buches Sozialgesetzbuch für das Jahr 2025\n",
+ "Verordnung zur Änderung der Entgeltbescheinigungsverordnung und der Beitragsverfahrensverordnung\n",
+ "Dritte Verordnung über zwingende Arbeitsbedingungen für Sicherheitskräfte an Verkehrsflughäfen\n",
+ "Künstlersozialabgabe-Verordnung 2025\n",
+ "Zwölfte Verordnung zur Änderung der Bürgergeld-Verordnung\n",
+ "Zweites Gesetz zur Änderung des Betriebsverfassungsgesetzes\n",
+ "Verordnung zur Festlegung und Anpassung der Bundesbeteiligung an den Leistungen für Unterkunft und Heizung für das Jahr 2024\n",
+ "Verordnung zur Anpassung der Entschädigungszahlungen nach dem Vierzehnten Buch Sozialgesetzbuch\n",
+ "Verordnung zur Bestimmung des Rentenwerts in der gesetzlichen Rentenversicherung und zur Bestimmung weiterer Werte zum 1. Juli 2024\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# prompt: welche titel haben die einträge im dataframe df für die spalte meta_initiant Bundesministerium für Gesundheit zeige jeden eintrag in einer separaten zeile\n",
+ "\n",
+ "# Assuming 'df' is already defined from the previous code block\n",
+ "\n",
+ "# Filter the DataFrame for entries where 'meta_initiant' is \"Bundesministerium für Gesundheit\"\n",
+ "filtered_df = df[df['meta_initiant'] == 'Bundesministerium für Gesundheit']\n",
+ "\n",
+ "# Extract the titles and print each on a separate line\n",
+ "for title in filtered_df['title']:\n",
+ " print(title)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "J7IQcy_JV48Z",
+ "outputId": "cfb452be-7a34-4db7-ab6a-95f17f43292b"
+ },
+ "execution_count": 51,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Dritte Verordnung zur Änderung der Coronavirus-Impfverordnung und der Coronavirus-Testverordnung\n",
+ "Vierundzwanzigste Verordnung zur Änderung von Anlagen des Betäubungsmittelgesetzes\n",
+ "Verordnung zur Änderung der Approbationsordnung für Zahnärzte und Zahnärztinnen und weiterer Verordnungen im Bereich der Heilberufe\n",
+ "Fünfte Verordnung zur Änderung der Pflegepersonaluntergrenzen-Verordnung\n",
+ "Medizinforschungsgesetz\n",
+ "Zweite Verordnung zur Änderung der Implantateregister-Betriebsverordnung\n",
+ "Zweite Verordnung zur Änderung der Approbationsordnung für Psychotherapeutinnen und Psychotherapeuten\n",
+ "Gesundheits-IT-Interoperabilitäts-Governance-Verordnung\n",
+ "Verordnung zum Anspruch auf Maßnahmen der spezifischen Prophylaxe gegen Respiratorische Synzytial Viren\n",
+ "Verordnung zum Modellvorhaben zur umfassenden Diagnostik und Therapiefindung mittels Genomsequenzierung bei seltenen und bei onkologischen Erkrankungen\n",
+ "Fünfte Verordnung zur Änderung der Anlage des Neue-psychoaktive-Stoffe-Gesetzes\n",
+ "Gesetz zur Änderung des Konsumcannabisgesetzes und des Medizinal-Cannabisgesetzes\n",
+ "Verordnung über die Grundsätze der Personalbedarfsbemessung in der stationären Krankenpflege\n"
+ ]
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file