Merge branch 'add-bonus-tutorials'
Browse files- src/04_use_case_bonus/events/_dbd423b9-5d05-4857-a0be-b7136518e7ff.jpeg +0 -0
- src/04_use_case_bonus/events/veranstaltungen_aggregieren.ipynb +172 -0
- src/04_use_case_bonus/news/_5e53f950-55e9-4158-9404-88d41af64cfb.jpeg +0 -0
- src/04_use_case_bonus/news/zeitungsartikel.ipynb +181 -0
- src/04_use_case_bonus/trend-monitoring/_3e3e2e53-2755-4ee2-b245-7222dc1ae7f8.jpeg +0 -0
- src/04_use_case_bonus/trend-monitoring/innovationsmanagement.ipynb +129 -0
- src/_quarto.yml +8 -1
src/04_use_case_bonus/events/_dbd423b9-5d05-4857-a0be-b7136518e7ff.jpeg
ADDED
![]() |
src/04_use_case_bonus/events/veranstaltungen_aggregieren.ipynb
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"---\n",
|
8 |
+
"title: \"Von HTML zu CSV: Veranstaltungsinformationen sammeln\"\n",
|
9 |
+
"description: \"Veranstaltungsinformationen mit BeautifulSoup und Pandas extrahiert und aufbereitet.\"\n",
|
10 |
+
"image: _dbd423b9-5d05-4857-a0be-b7136518e7ff.jpeg\n",
|
11 |
+
"---"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"::: {.callout-tip}\n",
|
19 |
+
"## Lernziele\n",
|
20 |
+
"\n",
|
21 |
+
"* Lernen, wie man spezifische HTML-Elemente extrahiert. Anwendung von Selektoren zur gezielten Extraktion von Text aus HTML-Elementen wie `<h2 class=\"teaser__title\">`, `<p class=\"teaser__subtitle\">`, usw.\n",
|
22 |
+
"* Verstehen, wie man Informationen über Veranstaltungen in der politischen Bildung in Brandenburg sammelt und analysiert, um sie für weiterführende Projekte oder Studien zu nutzen.\n",
|
23 |
+
":::"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"[](https://colab.research.google.com/#fileId=https://huggingface.co/spaces/datenwerkzeuge/CDL-Webscraping-Workshop-2025/blob/main/src/04_use_case_bonus/events/veranstaltungen_aggregieren.ipynb)"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 1,
|
36 |
+
"metadata": {
|
37 |
+
"id": "EsBwSUgTzKLH"
|
38 |
+
},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# bundeszentrale für politische bildung bietet RSS für veranstaltungen https://www.bpb.de/die-bpb/ueber-uns/service/rss/\n",
|
42 |
+
"# an anderer stelle kommt bei fehlen von RSS oder API, scraping in betracht"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 2,
|
48 |
+
"metadata": {
|
49 |
+
"id": "wUuU7z1jxzTf"
|
50 |
+
},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"# view-source:https://www.politische-bildung-brandenburg.de/veranstaltungen?page=2"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"metadata": {
|
60 |
+
"colab": {
|
61 |
+
"base_uri": "https://localhost:8080/"
|
62 |
+
},
|
63 |
+
"id": "aHP0vByew7PX",
|
64 |
+
"outputId": "301f3797-99ab-463f-9448-b925e1f01a1e"
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"# prompt: bitte extrahiere alle article elemente aus dem html dokument und extrahiere den text der folgenden element in jedem article element : <h2 class=\"teaser__title\">\n",
|
69 |
+
"# <p class=\"teaser__subtitle\">\n",
|
70 |
+
"# <p class=\"teaser__meta\">\n",
|
71 |
+
"# <p class=\"teaser__kicker\">\n",
|
72 |
+
"# <p class=\"teaser__data\">\n",
|
73 |
+
"\n",
|
74 |
+
"import requests\n",
|
75 |
+
"from bs4 import BeautifulSoup\n",
|
76 |
+
"\n",
|
77 |
+
"url = \"https://www.politische-bildung-brandenburg.de/veranstaltungen\"\n",
|
78 |
+
"\n",
|
79 |
+
"extracted_data = []\n",
|
80 |
+
"\n",
|
81 |
+
"for page in range(1, 10):\n",
|
82 |
+
" url = f\"https://www.politische-bildung-brandenburg.de/veranstaltungen?page={page}\"\n",
|
83 |
+
" try:\n",
|
84 |
+
" response = requests.get(url)\n",
|
85 |
+
" response.raise_for_status()\n",
|
86 |
+
"\n",
|
87 |
+
" soup = BeautifulSoup(response.content, \"html.parser\")\n",
|
88 |
+
"\n",
|
89 |
+
" articles = soup.find_all(\"article\")\n",
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
" for article in articles:\n",
|
93 |
+
" title = article.find(\"h2\", class_=\"teaser__title\")\n",
|
94 |
+
" subtitle = article.find(\"p\", class_=\"teaser__subtitle\")\n",
|
95 |
+
" meta = article.find(\"p\", class_=\"teaser__meta\")\n",
|
96 |
+
" date = article.find(\"p\", class_=\"teaser__kicker\")\n",
|
97 |
+
" location = article.find(\"p\", class_=\"teaser__data\") # corrected class name\n",
|
98 |
+
"\n",
|
99 |
+
" extracted_data.append({\n",
|
100 |
+
" \"title\": title.text.strip() if title else None,\n",
|
101 |
+
" \"subtitle\": subtitle.text.strip() if subtitle else None,\n",
|
102 |
+
" \"meta\": meta.text.strip() if meta else None,\n",
|
103 |
+
" \"date\": date.text.strip() if date else None,\n",
|
104 |
+
" \"location\": location.text.strip() if location else None\n",
|
105 |
+
" })\n",
|
106 |
+
"\n",
|
107 |
+
" print(url, len(articles))\n",
|
108 |
+
" if len(articles) == 0:\n",
|
109 |
+
" break\n",
|
110 |
+
"\n",
|
111 |
+
" except requests.exceptions.RequestException as e:\n",
|
112 |
+
" print(f\"An error occurred during the request: {e}\")\n",
|
113 |
+
" except Exception as e:\n",
|
114 |
+
" print(f\"An error occurred during processing: {e}\")"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 4,
|
120 |
+
"metadata": {
|
121 |
+
"id": "vqxi7Fkkyogw"
|
122 |
+
},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"import pandas as pd\n",
|
126 |
+
"\n",
|
127 |
+
"df = pd.DataFrame(extracted_data)"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 5,
|
133 |
+
"metadata": {
|
134 |
+
"id": "u41T06D7y6Yk"
|
135 |
+
},
|
136 |
+
"outputs": [],
|
137 |
+
"source": [
|
138 |
+
"df.to_csv(\"extracted_events.csv\")"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {
|
145 |
+
"colab": {
|
146 |
+
"base_uri": "https://localhost:8080/",
|
147 |
+
"height": 1000
|
148 |
+
},
|
149 |
+
"id": "4R46y6phy8xU",
|
150 |
+
"outputId": "0d466855-efba-4c94-9e34-c99851d165ce"
|
151 |
+
},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"pd.read_csv(\"extracted_events.csv\", index_col=0)"
|
155 |
+
]
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"colab": {
|
160 |
+
"provenance": []
|
161 |
+
},
|
162 |
+
"kernelspec": {
|
163 |
+
"display_name": "Python 3",
|
164 |
+
"name": "python3"
|
165 |
+
},
|
166 |
+
"language_info": {
|
167 |
+
"name": "python"
|
168 |
+
}
|
169 |
+
},
|
170 |
+
"nbformat": 4,
|
171 |
+
"nbformat_minor": 0
|
172 |
+
}
|
src/04_use_case_bonus/news/_5e53f950-55e9-4158-9404-88d41af64cfb.jpeg
ADDED
![]() |
src/04_use_case_bonus/news/zeitungsartikel.ipynb
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"---\n",
|
8 |
+
"title: \"Nachrichten-Data Mining\"\n",
|
9 |
+
"description: \"Extraktion und Analyse von Nachrichtenartikeln mithilfe von Python und spezifischen Bibliotheken wie newspaper3k.\"\n",
|
10 |
+
"image: _5e53f950-55e9-4158-9404-88d41af64cfb.jpeg\n",
|
11 |
+
"---"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"::: {.callout-tip}\n",
|
19 |
+
"## Lernziele\n",
|
20 |
+
"\n",
|
21 |
+
"* Entwicklung von Fähigkeiten zur Erstellung von Skripten, die wiederholt Nachrichtenartikel von einer bestimmten Quelle sammeln und analysieren können.\n",
|
22 |
+
"* Methoden der newspaper-Bibliothek, wie build, download, parse und nlp, zur Verarbeitung und Analyse von Nachrichtenartikeln.\n",
|
23 |
+
"* Einblick in die Struktur von Nachrichten-Webseiten und wie diese für analytische Zwecke genutzt werden können.\n",
|
24 |
+
":::\n",
|
25 |
+
"\n",
|
26 |
+
"[RSS Feeds der Süddeutschen Zeitung in der Übersicht ](https://www.sueddeutsche.de/service/updates-mit-rss-uebersicht-aller-rss-feeds-fuer-sz-de-sz-magazin-und-jetzt-de-1.393950)"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "markdown",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"[](https://colab.research.google.com/#fileId=https://huggingface.co/spaces/datenwerkzeuge/CDL-Webscraping-Workshop-2025/blob/main/src/04_use_case_bonus/news/zeitungsartikel.ipynb)"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {
|
40 |
+
"colab": {
|
41 |
+
"base_uri": "https://localhost:8080/"
|
42 |
+
},
|
43 |
+
"id": "Y1uXvjoY4fap",
|
44 |
+
"outputId": "95e6c22b-5b37-47ab-f1ec-f5aac34c1f3f"
|
45 |
+
},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"! pip install newspaper3k -q"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"metadata": {
|
55 |
+
"colab": {
|
56 |
+
"base_uri": "https://localhost:8080/"
|
57 |
+
},
|
58 |
+
"id": "gFRiyo7M4xZ_",
|
59 |
+
"outputId": "096a2225-ecfa-4e4c-bc88-f1e9f5ba03eb"
|
60 |
+
},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"! pip install lxml_html_clean -q # Install the required package"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"metadata": {
|
70 |
+
"id": "rGGgwoZa4pRo"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"import newspaper"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 8,
|
80 |
+
"metadata": {
|
81 |
+
"id": "6eejA6K0484J"
|
82 |
+
},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"sueddeutsche_paper = newspaper.build('https://www.sueddeutsche.de/')"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"metadata": {
|
92 |
+
"colab": {
|
93 |
+
"base_uri": "https://localhost:8080/"
|
94 |
+
},
|
95 |
+
"id": "-XjEtFnv5Q8u",
|
96 |
+
"outputId": "3c2efabd-bec2-4af2-bb63-c952cd1d6816"
|
97 |
+
},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"for article in sueddeutsche_paper.articles:\n",
|
101 |
+
" print(article.url)"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"metadata": {
|
108 |
+
"colab": {
|
109 |
+
"base_uri": "https://localhost:8080/"
|
110 |
+
},
|
111 |
+
"id": "q44TXocf5cHg",
|
112 |
+
"outputId": "16d01c1e-6cc9-4882-aeee-1e46f2c63859"
|
113 |
+
},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"for category in sueddeutsche_paper.category_urls():\n",
|
117 |
+
" print(category)"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": null,
|
123 |
+
"metadata": {
|
124 |
+
"colab": {
|
125 |
+
"base_uri": "https://localhost:8080/"
|
126 |
+
},
|
127 |
+
"id": "QlVcueZQ55I4",
|
128 |
+
"outputId": "7226d35d-3a6b-4399-8cd3-9ec2e92ac404"
|
129 |
+
},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"import nltk\n",
|
133 |
+
"nltk.download('punkt_tab')"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 13,
|
139 |
+
"metadata": {
|
140 |
+
"id": "x2FsV8a-5mEh"
|
141 |
+
},
|
142 |
+
"outputs": [],
|
143 |
+
"source": [
|
144 |
+
"sueddeutsche_article = sueddeutsche_paper.articles[0]\n",
|
145 |
+
"sueddeutsche_article.download()\n",
|
146 |
+
"sueddeutsche_article.parse()\n",
|
147 |
+
"sueddeutsche_article.nlp()"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"metadata": {
|
154 |
+
"colab": {
|
155 |
+
"base_uri": "https://localhost:8080/",
|
156 |
+
"height": 105
|
157 |
+
},
|
158 |
+
"id": "lKem_ggG6CoY",
|
159 |
+
"outputId": "cbd0d8c9-a66b-4deb-b94e-94a3ebab4fe3"
|
160 |
+
},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"sueddeutsche_article.text"
|
164 |
+
]
|
165 |
+
}
|
166 |
+
],
|
167 |
+
"metadata": {
|
168 |
+
"colab": {
|
169 |
+
"provenance": []
|
170 |
+
},
|
171 |
+
"kernelspec": {
|
172 |
+
"display_name": "Python 3",
|
173 |
+
"name": "python3"
|
174 |
+
},
|
175 |
+
"language_info": {
|
176 |
+
"name": "python"
|
177 |
+
}
|
178 |
+
},
|
179 |
+
"nbformat": 4,
|
180 |
+
"nbformat_minor": 0
|
181 |
+
}
|
src/04_use_case_bonus/trend-monitoring/_3e3e2e53-2755-4ee2-b245-7222dc1ae7f8.jpeg
ADDED
![]() |
src/04_use_case_bonus/trend-monitoring/innovationsmanagement.ipynb
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"---\n",
|
8 |
+
"title: \"Pytrends zur Analyse von Suchinteresse\"\n",
|
9 |
+
"description: \"Nutzung der Pytrends-Bibliothek für die Analyse des Suchinteresses.\"\n",
|
10 |
+
"image: _3e3e2e53-2755-4ee2-b245-7222dc1ae7f8.jpeg\n",
|
11 |
+
"---"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"::: {.callout-tip}\n",
|
19 |
+
"## Lernziele\n",
|
20 |
+
"\n",
|
21 |
+
"* Grundlegende Manipulation und Analyse von Zeitreihendaten in Pandas DataFrames.\n",
|
22 |
+
"* Analyse und Interpretation von Trends in der Internet-Suchverhaltensdaten, was nützlich für Marktforschung sein kann.\n",
|
23 |
+
":::"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"[](https://colab.research.google.com/#fileId=https://huggingface.co/spaces/datenwerkzeuge/CDL-Webscraping-Workshop-2025/blob/main/src/04_use_case_bonus/trend-monitoring/innovationsmanagement.ipynb)"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {
|
37 |
+
"id": "FTMJrfp61duL"
|
38 |
+
},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# https://trends.google.com/trends/"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 2,
|
47 |
+
"metadata": {
|
48 |
+
"id": "szDfBN0F0ZjE"
|
49 |
+
},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"! pip install pytrends -q"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 3,
|
58 |
+
"metadata": {
|
59 |
+
"id": "fUe4GvOY0TkW"
|
60 |
+
},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"from pytrends.request import TrendReq\n",
|
64 |
+
"\n",
|
65 |
+
"pytrends = TrendReq(hl='en-US', tz=360)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 4,
|
71 |
+
"metadata": {
|
72 |
+
"id": "F6Gl7RpF0eo8"
|
73 |
+
},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"kw_list = [\"Blockchain\"]\n",
|
77 |
+
"pytrends.build_payload(kw_list, cat=0, timeframe='today 5-y', geo='', gprop='')"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {
|
84 |
+
"colab": {
|
85 |
+
"base_uri": "https://localhost:8080/",
|
86 |
+
"height": 1000
|
87 |
+
},
|
88 |
+
"id": "8144JVpI0hn7",
|
89 |
+
"outputId": "ef9f123d-9cbc-42c4-ad22-d53108720d50"
|
90 |
+
},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"pytrends.interest_over_time()"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": null,
|
99 |
+
"metadata": {
|
100 |
+
"colab": {
|
101 |
+
"base_uri": "https://localhost:8080/",
|
102 |
+
"height": 410
|
103 |
+
},
|
104 |
+
"id": "321ielTs0sPK",
|
105 |
+
"outputId": "c8dbb162-268a-4352-9970-1e3c7c408ea1"
|
106 |
+
},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"from matplotlib import pyplot as plt\n",
|
110 |
+
"_df_2['Blockchain'].plot(kind='line', figsize=(8, 4), title='Blockchain')\n",
|
111 |
+
"plt.gca().spines[['top', 'right']].set_visible(False)"
|
112 |
+
]
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"metadata": {
|
116 |
+
"colab": {
|
117 |
+
"provenance": []
|
118 |
+
},
|
119 |
+
"kernelspec": {
|
120 |
+
"display_name": "Python 3",
|
121 |
+
"name": "python3"
|
122 |
+
},
|
123 |
+
"language_info": {
|
124 |
+
"name": "python"
|
125 |
+
}
|
126 |
+
},
|
127 |
+
"nbformat": 4,
|
128 |
+
"nbformat_minor": 0
|
129 |
+
}
|
src/_quarto.yml
CHANGED
@@ -106,7 +106,14 @@ website:
|
|
106 |
- section: "Anwendungsfall Bonus"
|
107 |
contents:
|
108 |
- href: 04_use_case_bonus/podcasts/aggregate_podcast_episodes_to_markdown.ipynb
|
109 |
-
text: "Podcasts aggregieren"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
format:
|
112 |
html:
|
|
|
106 |
- section: "Anwendungsfall Bonus"
|
107 |
contents:
|
108 |
- href: 04_use_case_bonus/podcasts/aggregate_podcast_episodes_to_markdown.ipynb
|
109 |
+
text: "Podcasts aggregieren"
|
110 |
+
- href: 04_use_case_bonus/news/zeitungsartikel.ipynb
|
111 |
+
text: "Nachrichten-Data Mining"
|
112 |
+
- href: 04_use_case_bonus/trend-monitoring/innovationsmanagement.ipynb
|
113 |
+
text: "Pytrends & Suchinteresse"
|
114 |
+
- href: 04_use_case_bonus/events/veranstaltungen_aggregieren.ipynb
|
115 |
+
text: "Veranstaltungen sammeln
|
116 |
+
"
|
117 |
|
118 |
format:
|
119 |
html:
|