Spaces:
Build error
Build error
Commit
·
85cd50e
1
Parent(s):
765e08f
revert
Browse files- app.py +46 -107
- app_old.py +0 -362
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import nltk
|
3 |
import librosa
|
4 |
-
import soundfile as sf
|
5 |
from transformers import pipeline
|
6 |
from transformers.file_utils import cached_path, hf_bucket_url
|
7 |
import os, zipfile
|
@@ -80,7 +79,9 @@ def speech2text_vi(audio):
|
|
80 |
"""English speech2text"""
|
81 |
nltk.download("punkt")
|
82 |
# Loading the model and the tokenizer
|
83 |
-
|
|
|
|
|
84 |
|
85 |
def load_data(input_file):
|
86 |
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
@@ -93,7 +94,7 @@ def load_data(input_file):
|
|
93 |
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
94 |
if sample_rate != 16000:
|
95 |
speech = librosa.resample(speech, sample_rate, 16000)
|
96 |
-
return speech
|
97 |
|
98 |
def correct_casing(input_sentence):
|
99 |
""" This function is for correcting the casing of the generated transcribed text
|
@@ -105,10 +106,18 @@ def correct_casing(input_sentence):
|
|
105 |
def speech2text_en(input_file):
|
106 |
"""This function generates transcripts for the provided audio input
|
107 |
"""
|
108 |
-
speech
|
109 |
# Tokenize
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
|
114 |
"""Machine translation"""
|
@@ -138,33 +147,6 @@ def inference_envi(audio):
|
|
138 |
return en_text, vi_text
|
139 |
|
140 |
def transcribe_vi(audio, state_vi="", state_en=""):
|
141 |
-
ds = speech_file_to_array_fn(audio.name)
|
142 |
-
# infer model
|
143 |
-
input_values = processor(
|
144 |
-
ds["speech"],
|
145 |
-
sampling_rate=ds["sampling_rate"],
|
146 |
-
return_tensors="pt"
|
147 |
-
).input_values
|
148 |
-
# decode ctc output
|
149 |
-
logits = vi_model(input_values).logits[0]
|
150 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
151 |
-
greedy_search_output = processor.decode(pred_ids)
|
152 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
153 |
-
state_vi += beam_search_output + " "
|
154 |
-
en_text = translate_vi2en(beam_search_output)
|
155 |
-
state_en += en_text + " "
|
156 |
-
return state_vi, state_en
|
157 |
-
|
158 |
-
def transcribe_en(audio, state_en="", state_vi=""):
|
159 |
-
speech, samplerate = load_data(audio)
|
160 |
-
# Tokenize
|
161 |
-
transcription = eng_asr(speech)["text"]
|
162 |
-
state_en += transcription + " "
|
163 |
-
vi_text = translate_en2vi(transcription)
|
164 |
-
state_vi += vi_text + " "
|
165 |
-
return state_en, state_vi
|
166 |
-
|
167 |
-
def transcribe_vi_rm(audio, state_vi="", state_en=""):
|
168 |
ds = speech_file_to_array_fn(audio.name)
|
169 |
# infer model
|
170 |
input_values = processor(
|
@@ -182,41 +164,23 @@ def transcribe_vi_rm(audio, state_vi="", state_en=""):
|
|
182 |
state_en += en_text + " "
|
183 |
return state_vi, state_en, state_vi, state_en
|
184 |
|
185 |
-
def
|
186 |
-
speech
|
187 |
# Tokenize
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
state_en += transcription + " "
|
190 |
vi_text = translate_en2vi(transcription)
|
191 |
state_vi += vi_text + " "
|
192 |
return state_en, state_vi, state_en, state_vi
|
193 |
|
194 |
-
def transcribe_vi_rd(audio, state=""):
|
195 |
-
ds = speech_file_to_array_fn(audio.name)
|
196 |
-
# infer model
|
197 |
-
input_values = processor(
|
198 |
-
ds["speech"],
|
199 |
-
sampling_rate=ds["sampling_rate"],
|
200 |
-
return_tensors="pt"
|
201 |
-
).input_values
|
202 |
-
# decode ctc output
|
203 |
-
logits = vi_model(input_values).logits[0]
|
204 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
205 |
-
greedy_search_output = processor.decode(pred_ids)
|
206 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
207 |
-
en_text = translate_vi2en(beam_search_output)
|
208 |
-
state += en_text + " "
|
209 |
-
return state, state
|
210 |
-
|
211 |
-
def transcribe_en_rd(audio, state=""):
|
212 |
-
speech, samplerate = load_data(audio)
|
213 |
-
# Tokenize
|
214 |
-
transcription = eng_asr(speech)["text"]
|
215 |
-
transcription = correct_casing(transcription.lower())
|
216 |
-
vi_text = translate_en2vi(transcription)
|
217 |
-
state += vi_text + " "
|
218 |
-
return state, state
|
219 |
-
|
220 |
"""Gradio demo"""
|
221 |
|
222 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
@@ -243,39 +207,27 @@ with gr.Blocks() as demo:
|
|
243 |
translate_button_vien_1.click(lambda text: translate_vi2en(text), inputs=vietnamese_text, outputs=english_out_1)
|
244 |
gr.Examples(examples=vi_example_text,
|
245 |
inputs=[vietnamese_text])
|
246 |
-
|
247 |
with gr.TabItem("Speech2text and Vi-En Translation"):
|
248 |
with gr.Row():
|
249 |
with gr.Column():
|
250 |
-
|
251 |
translate_button_vien_2 = gr.Button(value="Translate To English")
|
252 |
with gr.Column():
|
253 |
speech2text_vi1 = gr.Textbox(label="Vietnamese Text")
|
254 |
english_out_2 = gr.Textbox(label="English Text")
|
255 |
-
|
|
|
256 |
gr.Examples(examples=vi_example_voice,
|
257 |
-
inputs=[
|
258 |
-
|
259 |
with gr.TabItem("Vi-En Realtime Translation"):
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
gr.Interface(
|
269 |
-
fn=transcribe_vi_rd,
|
270 |
-
inputs=[
|
271 |
-
gr.Audio(source="microphone", type="file", streaming=True),
|
272 |
-
"state"
|
273 |
-
],
|
274 |
-
outputs=[
|
275 |
-
"textbox",
|
276 |
-
"state"
|
277 |
-
],
|
278 |
-
live=True).launch()
|
279 |
|
280 |
|
281 |
with gr.Tabs():
|
@@ -303,27 +255,14 @@ with gr.Blocks() as demo:
|
|
303 |
inputs=[en_audio_1])
|
304 |
|
305 |
with gr.TabItem("En-Vi Realtime Translation"):
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
gr.Interface(
|
316 |
-
fn=transcribe_en_rd,
|
317 |
-
inputs=[
|
318 |
-
gr.Audio(source="microphone", type="filepath", streaming=True),
|
319 |
-
"state"
|
320 |
-
],
|
321 |
-
outputs=[
|
322 |
-
"textbox",
|
323 |
-
"state"
|
324 |
-
],
|
325 |
-
live=True).launch()
|
326 |
-
|
327 |
|
328 |
if __name__ == "__main__":
|
329 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import nltk
|
3 |
import librosa
|
|
|
4 |
from transformers import pipeline
|
5 |
from transformers.file_utils import cached_path, hf_bucket_url
|
6 |
import os, zipfile
|
|
|
79 |
"""English speech2text"""
|
80 |
nltk.download("punkt")
|
81 |
# Loading the model and the tokenizer
|
82 |
+
model_name = "facebook/wav2vec2-base-960h"
|
83 |
+
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
84 |
+
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
85 |
|
86 |
def load_data(input_file):
|
87 |
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
|
|
94 |
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
95 |
if sample_rate != 16000:
|
96 |
speech = librosa.resample(speech, sample_rate, 16000)
|
97 |
+
return speech
|
98 |
|
99 |
def correct_casing(input_sentence):
|
100 |
""" This function is for correcting the casing of the generated transcribed text
|
|
|
106 |
def speech2text_en(input_file):
|
107 |
"""This function generates transcripts for the provided audio input
|
108 |
"""
|
109 |
+
speech = load_data(input_file)
|
110 |
# Tokenize
|
111 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
112 |
+
# Take logits
|
113 |
+
logits = eng_model(input_values).logits
|
114 |
+
# Take argmax
|
115 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
116 |
+
# Get the words from predicted word ids
|
117 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
118 |
+
# Output is all upper case
|
119 |
+
transcription = correct_casing(transcription.lower())
|
120 |
+
return transcription
|
121 |
|
122 |
|
123 |
"""Machine translation"""
|
|
|
147 |
return en_text, vi_text
|
148 |
|
149 |
def transcribe_vi(audio, state_vi="", state_en=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
ds = speech_file_to_array_fn(audio.name)
|
151 |
# infer model
|
152 |
input_values = processor(
|
|
|
164 |
state_en += en_text + " "
|
165 |
return state_vi, state_en, state_vi, state_en
|
166 |
|
167 |
+
def transcribe_en(audio, state_en="", state_vi=""):
|
168 |
+
speech = load_data(audio)
|
169 |
# Tokenize
|
170 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
171 |
+
# Take logits
|
172 |
+
logits = eng_model(input_values).logits
|
173 |
+
# Take argmax
|
174 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
175 |
+
# Get the words from predicted word ids
|
176 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
177 |
+
# Output is all upper case
|
178 |
+
transcription = correct_casing(transcription.lower())
|
179 |
state_en += transcription + " "
|
180 |
vi_text = translate_en2vi(transcription)
|
181 |
state_vi += vi_text + " "
|
182 |
return state_en, state_vi, state_en, state_vi
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
"""Gradio demo"""
|
185 |
|
186 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
|
|
207 |
translate_button_vien_1.click(lambda text: translate_vi2en(text), inputs=vietnamese_text, outputs=english_out_1)
|
208 |
gr.Examples(examples=vi_example_text,
|
209 |
inputs=[vietnamese_text])
|
|
|
210 |
with gr.TabItem("Speech2text and Vi-En Translation"):
|
211 |
with gr.Row():
|
212 |
with gr.Column():
|
213 |
+
vi_audio = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=False)
|
214 |
translate_button_vien_2 = gr.Button(value="Translate To English")
|
215 |
with gr.Column():
|
216 |
speech2text_vi1 = gr.Textbox(label="Vietnamese Text")
|
217 |
english_out_2 = gr.Textbox(label="English Text")
|
218 |
+
|
219 |
+
translate_button_vien_2.click(lambda vi_voice: inference_vien(vi_voice), inputs=vi_audio, outputs=[speech2text_vi1, english_out_2])
|
220 |
gr.Examples(examples=vi_example_voice,
|
221 |
+
inputs=[vi_audio])
|
|
|
222 |
with gr.TabItem("Vi-En Realtime Translation"):
|
223 |
+
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
vi_audio = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True)
|
226 |
+
translate_button_vien_2 = gr.Button(value="Translate To English")
|
227 |
+
with gr.Column():
|
228 |
+
speech2text_vi2 = gr.Textbox(label="Vietnamese Text")
|
229 |
+
english_out_3 = gr.Textbox(label="English Text")
|
230 |
+
vi_audio.change(transcribe_vi, [vi_audio, "state_vi", "state_en"], [speech2text_vi2, english_out_3, "state_vi", "state_en"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
with gr.Tabs():
|
|
|
255 |
inputs=[en_audio_1])
|
256 |
|
257 |
with gr.TabItem("En-Vi Realtime Translation"):
|
258 |
+
with gr.Row():
|
259 |
+
with gr.Column():
|
260 |
+
en_audio_2 = gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True)
|
261 |
+
# translate_button_envi_2 = gr.Button(value="Translate To Vietnamese")
|
262 |
+
with gr.Column():
|
263 |
+
speech2text_en2 = gr.Textbox(label="English Text")
|
264 |
+
vietnamese_out_3 = gr.Textbox(label="Vietnamese Text")
|
265 |
+
en_audio_2.change(transcribe_en, [en_audio_2, "state_en", "state_vi"], [speech2text_en2, vietnamese_out_3, "state_en", "state_vi"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
demo.launch()
|
app_old.py
DELETED
@@ -1,362 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import nltk
|
3 |
-
import librosa
|
4 |
-
import soundfile as sf
|
5 |
-
from transformers import pipeline
|
6 |
-
from transformers.file_utils import cached_path, hf_bucket_url
|
7 |
-
import os, zipfile
|
8 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
9 |
-
from datasets import load_dataset
|
10 |
-
import torch
|
11 |
-
import kenlm
|
12 |
-
import torchaudio
|
13 |
-
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
|
14 |
-
|
15 |
-
"""Vietnamese speech2text"""
|
16 |
-
cache_dir = './cache/'
|
17 |
-
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
18 |
-
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
19 |
-
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
|
20 |
-
lm_file = cached_path(lm_file,cache_dir=cache_dir)
|
21 |
-
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
22 |
-
zip_ref.extractall(cache_dir)
|
23 |
-
lm_file = cache_dir + 'vi_lm_4grams.bin'
|
24 |
-
|
25 |
-
def get_decoder_ngram_model(tokenizer, ngram_lm_path):
|
26 |
-
vocab_dict = tokenizer.get_vocab()
|
27 |
-
sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
|
28 |
-
vocab = [x[1] for x in sort_vocab][:-2]
|
29 |
-
vocab_list = vocab
|
30 |
-
# convert ctc blank character representation
|
31 |
-
vocab_list[tokenizer.pad_token_id] = ""
|
32 |
-
# replace special characters
|
33 |
-
vocab_list[tokenizer.unk_token_id] = ""
|
34 |
-
# vocab_list[tokenizer.bos_token_id] = ""
|
35 |
-
# vocab_list[tokenizer.eos_token_id] = ""
|
36 |
-
# convert space character representation
|
37 |
-
vocab_list[tokenizer.word_delimiter_token_id] = " "
|
38 |
-
# specify ctc blank char index, since conventially it is the last entry of the logit matrix
|
39 |
-
alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id)
|
40 |
-
lm_model = kenlm.Model(ngram_lm_path)
|
41 |
-
decoder = BeamSearchDecoderCTC(alphabet,
|
42 |
-
language_model=LanguageModel(lm_model))
|
43 |
-
return decoder
|
44 |
-
ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file)
|
45 |
-
|
46 |
-
# define function to read in sound file
|
47 |
-
def speech_file_to_array_fn(path, max_seconds=10):
|
48 |
-
batch = {"file": path}
|
49 |
-
speech_array, sampling_rate = torchaudio.load(batch["file"])
|
50 |
-
if sampling_rate != 16000:
|
51 |
-
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
52 |
-
new_freq=16000)
|
53 |
-
speech_array = transform(speech_array)
|
54 |
-
speech_array = speech_array[0]
|
55 |
-
if max_seconds > 0:
|
56 |
-
speech_array = speech_array[:max_seconds*16000]
|
57 |
-
batch["speech"] = speech_array.numpy()
|
58 |
-
batch["sampling_rate"] = 16000
|
59 |
-
return batch
|
60 |
-
|
61 |
-
# tokenize
|
62 |
-
def speech2text_vi(audio):
|
63 |
-
# read in sound file
|
64 |
-
# load dummy dataset and read soundfiles
|
65 |
-
ds = speech_file_to_array_fn(audio.name)
|
66 |
-
# infer model
|
67 |
-
input_values = processor(
|
68 |
-
ds["speech"],
|
69 |
-
sampling_rate=ds["sampling_rate"],
|
70 |
-
return_tensors="pt"
|
71 |
-
).input_values
|
72 |
-
# decode ctc output
|
73 |
-
logits = vi_model(input_values).logits[0]
|
74 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
75 |
-
greedy_search_output = processor.decode(pred_ids)
|
76 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
77 |
-
return beam_search_output
|
78 |
-
|
79 |
-
|
80 |
-
"""English speech2text"""
|
81 |
-
nltk.download("punkt")
|
82 |
-
# Loading the model and the tokenizer
|
83 |
-
model_name = "facebook/wav2vec2-base-960h"
|
84 |
-
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
85 |
-
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
86 |
-
|
87 |
-
def load_data(input_file):
|
88 |
-
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
89 |
-
"""
|
90 |
-
# read the file
|
91 |
-
speech, sample_rate = librosa.load(input_file)
|
92 |
-
# make it 1-D
|
93 |
-
if len(speech.shape) > 1:
|
94 |
-
speech = speech[:, 0] + speech[:, 1]
|
95 |
-
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
96 |
-
if sample_rate != 16000:
|
97 |
-
speech = librosa.resample(speech, sample_rate, 16000)
|
98 |
-
return speech, sample_rate
|
99 |
-
|
100 |
-
def correct_casing(input_sentence):
|
101 |
-
""" This function is for correcting the casing of the generated transcribed text
|
102 |
-
"""
|
103 |
-
sentences = nltk.sent_tokenize(input_sentence)
|
104 |
-
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
105 |
-
|
106 |
-
|
107 |
-
def speech2text_en(input_file):
|
108 |
-
"""This function generates transcripts for the provided audio input
|
109 |
-
"""
|
110 |
-
speech, samplerate = load_data(input_file)
|
111 |
-
# Tokenize
|
112 |
-
input_values = eng_tokenizer(speech, sampling_rate = samplerate, return_tensors="pt").input_values
|
113 |
-
# Take logits
|
114 |
-
logits = eng_model(input_values).logits
|
115 |
-
# Take argmax
|
116 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
117 |
-
# Get the words from predicted word ids
|
118 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
119 |
-
# Output is all upper case
|
120 |
-
transcription = correct_casing(transcription.lower())
|
121 |
-
return transcription
|
122 |
-
|
123 |
-
|
124 |
-
"""Machine translation"""
|
125 |
-
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
126 |
-
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
127 |
-
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
128 |
-
envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
129 |
-
|
130 |
-
def translate_vi2en(Vietnamese):
|
131 |
-
return vien_translator(Vietnamese)[0]['translation_text']
|
132 |
-
|
133 |
-
def translate_en2vi(English):
|
134 |
-
return envi_translator(English)[0]['translation_text']
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
""" Inference"""
|
140 |
-
def inference_vien(audio):
|
141 |
-
vi_text = speech2text_vi(audio)
|
142 |
-
en_text = translate_vi2en(vi_text)
|
143 |
-
return vi_text, en_text
|
144 |
-
|
145 |
-
def inference_envi(audio):
|
146 |
-
en_text = speech2text_en(audio)
|
147 |
-
vi_text = translate_en2vi(en_text)
|
148 |
-
return en_text, vi_text
|
149 |
-
|
150 |
-
def transcribe_vi(audio, state_vi="", state_en=""):
|
151 |
-
ds = speech_file_to_array_fn(audio.name)
|
152 |
-
# infer model
|
153 |
-
input_values = processor(
|
154 |
-
ds["speech"],
|
155 |
-
sampling_rate=ds["sampling_rate"],
|
156 |
-
return_tensors="pt"
|
157 |
-
).input_values
|
158 |
-
# decode ctc output
|
159 |
-
logits = vi_model(input_values).logits[0]
|
160 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
161 |
-
greedy_search_output = processor.decode(pred_ids)
|
162 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
163 |
-
state_vi += beam_search_output + " "
|
164 |
-
en_text = translate_vi2en(beam_search_output)
|
165 |
-
state_en += en_text + " "
|
166 |
-
return state_vi, state_en
|
167 |
-
|
168 |
-
def transcribe_en(audio, state_en="", state_vi=""):
|
169 |
-
speech, samplerate = load_data(audio)
|
170 |
-
# Tokenize
|
171 |
-
input_values = eng_tokenizer(speech, sampling_rate = samplerate, return_tensors="pt").input_values
|
172 |
-
# Take logits
|
173 |
-
logits = eng_model(input_values).logits
|
174 |
-
# Take argmax
|
175 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
176 |
-
# Get the words from predicted word ids
|
177 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
178 |
-
# Output is all upper case
|
179 |
-
transcription = correct_casing(transcription.lower())
|
180 |
-
state_en += transcription + " "
|
181 |
-
vi_text = translate_en2vi(transcription)
|
182 |
-
state_vi += vi_text + " "
|
183 |
-
return state_en, state_vi
|
184 |
-
|
185 |
-
def transcribe_vi_rm(audio, state_vi="", state_en=""):
|
186 |
-
ds = speech_file_to_array_fn(audio.name)
|
187 |
-
# infer model
|
188 |
-
input_values = processor(
|
189 |
-
ds["speech"],
|
190 |
-
sampling_rate=ds["sampling_rate"],
|
191 |
-
return_tensors="pt"
|
192 |
-
).input_values
|
193 |
-
# decode ctc output
|
194 |
-
logits = vi_model(input_values).logits[0]
|
195 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
196 |
-
greedy_search_output = processor.decode(pred_ids)
|
197 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
198 |
-
state_vi += beam_search_output + " "
|
199 |
-
en_text = translate_vi2en(beam_search_output)
|
200 |
-
state_en += en_text + " "
|
201 |
-
return state_vi, state_en, state_vi, state_en
|
202 |
-
|
203 |
-
def transcribe_en_rm(audio, state_en="", state_vi=""):
|
204 |
-
speech, samplerate = load_data(audio)
|
205 |
-
# Tokenize
|
206 |
-
input_values = eng_tokenizer(speech, sampling_rate = samplerate, return_tensors="pt").input_values
|
207 |
-
# Take logits
|
208 |
-
logits = eng_model(input_values).logits
|
209 |
-
# Take argmax
|
210 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
211 |
-
# Get the words from predicted word ids
|
212 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
213 |
-
# Output is all upper case
|
214 |
-
transcription = correct_casing(transcription.lower())
|
215 |
-
state_en += transcription + " "
|
216 |
-
vi_text = translate_en2vi(transcription)
|
217 |
-
state_vi += vi_text + " "
|
218 |
-
return state_en, state_vi, state_en, state_vi
|
219 |
-
|
220 |
-
def transcribe_vi_rd(audio, state=""):
|
221 |
-
ds = speech_file_to_array_fn(audio.name)
|
222 |
-
# infer model
|
223 |
-
input_values = processor(
|
224 |
-
ds["speech"],
|
225 |
-
sampling_rate=ds["sampling_rate"],
|
226 |
-
return_tensors="pt"
|
227 |
-
).input_values
|
228 |
-
# decode ctc output
|
229 |
-
logits = vi_model(input_values).logits[0]
|
230 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
231 |
-
greedy_search_output = processor.decode(pred_ids)
|
232 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
233 |
-
en_text = translate_vi2en(beam_search_output)
|
234 |
-
state += en_text + " "
|
235 |
-
return state, state
|
236 |
-
|
237 |
-
def transcribe_en_rd(audio, state=""):
|
238 |
-
speech, samplerate = load_data(audio)
|
239 |
-
# Tokenize
|
240 |
-
input_values = eng_tokenizer(speech, sampling_rate = samplerate, return_tensors="pt").input_values
|
241 |
-
# Take logits
|
242 |
-
logits = eng_model(input_values).logits
|
243 |
-
# Take argmax
|
244 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
245 |
-
# Get the words from predicted word ids
|
246 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
247 |
-
# Output is all upper case
|
248 |
-
transcription = correct_casing(transcription.lower())
|
249 |
-
vi_text = translate_en2vi(transcription)
|
250 |
-
state += vi_text + " "
|
251 |
-
return state, state
|
252 |
-
|
253 |
-
"""Gradio demo"""
|
254 |
-
|
255 |
-
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
256 |
-
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
257 |
-
"Nếu như một câu nói có thể khiến em vui."]
|
258 |
-
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
259 |
-
|
260 |
-
en_example_text = ["According to a study by Statista, the global AI market is set to grow up to 54 percent every single year.",
|
261 |
-
"As one of the world's greatest cities, Air New Zealand is proud to add the Big Apple to its list of 29 international destinations.",
|
262 |
-
"And yet, earlier this month, I found myself at Halloween Horror Nights at Universal Orlando Resort, one of the most popular Halloween events in the US among hardcore horror buffs."
|
263 |
-
]
|
264 |
-
en_example_voice =[['en_speech_01.wav'], ['en_speech_02.wav'], ['en_speech_03.wav']]
|
265 |
-
|
266 |
-
|
267 |
-
with gr.Blocks() as demo:
|
268 |
-
with gr.Tabs():
|
269 |
-
with gr.TabItem("Translation: Vietnamese to English"):
|
270 |
-
with gr.Row():
|
271 |
-
with gr.Column():
|
272 |
-
vietnamese_text = gr.Textbox(label="Vietnamese Text")
|
273 |
-
translate_button_vien_1 = gr.Button(value="Translate To English")
|
274 |
-
with gr.Column():
|
275 |
-
english_out_1 = gr.Textbox(label="English Text")
|
276 |
-
translate_button_vien_1.click(lambda text: translate_vi2en(text), inputs=vietnamese_text, outputs=english_out_1)
|
277 |
-
gr.Examples(examples=vi_example_text,
|
278 |
-
inputs=[vietnamese_text])
|
279 |
-
|
280 |
-
with gr.TabItem("Speech2text and Vi-En Translation"):
|
281 |
-
with gr.Row():
|
282 |
-
with gr.Column():
|
283 |
-
vi_audio_1 = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=False)
|
284 |
-
translate_button_vien_2 = gr.Button(value="Translate To English")
|
285 |
-
with gr.Column():
|
286 |
-
speech2text_vi1 = gr.Textbox(label="Vietnamese Text")
|
287 |
-
english_out_2 = gr.Textbox(label="English Text")
|
288 |
-
translate_button_vien_2.click(lambda vi_voice: inference_vien(vi_voice), inputs=vi_audio_1, outputs=[speech2text_vi1, english_out_2])
|
289 |
-
gr.Examples(examples=vi_example_voice,
|
290 |
-
inputs=[vi_audio_1])
|
291 |
-
|
292 |
-
with gr.TabItem("Vi-En Realtime Translation"):
|
293 |
-
# with gr.Row():
|
294 |
-
# with gr.Column():
|
295 |
-
# vi_audio_2 = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True)
|
296 |
-
# with gr.Column():
|
297 |
-
# speech2text_vi2 = gr.Textbox(label="Vietnamese Text")
|
298 |
-
# english_out_3 = gr.Textbox(label="English Text")
|
299 |
-
# vi_audio_2.change(transcribe_vi, [vi_audio_2, speech2text_vi2, english_out_3], [speech2text_vi2, english_out_3])
|
300 |
-
|
301 |
-
gr.Interface(
|
302 |
-
fn=transcribe_vi_rd,
|
303 |
-
inputs=[
|
304 |
-
gr.Audio(source="microphone", type="file", streaming=True),
|
305 |
-
"state"
|
306 |
-
],
|
307 |
-
outputs=[
|
308 |
-
"textbox",
|
309 |
-
"state"
|
310 |
-
],
|
311 |
-
live=True).launch()
|
312 |
-
|
313 |
-
|
314 |
-
with gr.Tabs():
|
315 |
-
with gr.TabItem("Translation: English to Vietnamese"):
|
316 |
-
with gr.Row():
|
317 |
-
with gr.Column():
|
318 |
-
english_text = gr.Textbox(label="English Text")
|
319 |
-
translate_button_envi_1 = gr.Button(value="Translate To Vietnamese")
|
320 |
-
with gr.Column():
|
321 |
-
vietnamese_out_1 = gr.Textbox(label="Vietnamese Text")
|
322 |
-
translate_button_envi_1.click(lambda text: translate_en2vi(text), inputs=english_text, outputs=vietnamese_out_1)
|
323 |
-
gr.Examples(examples=en_example_text,
|
324 |
-
inputs=[english_text])
|
325 |
-
|
326 |
-
with gr.TabItem("Speech2text and En-Vi Translation"):
|
327 |
-
with gr.Row():
|
328 |
-
with gr.Column():
|
329 |
-
en_audio_1 = gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=False)
|
330 |
-
translate_button_envi_2 = gr.Button(value="Translate To Vietnamese")
|
331 |
-
with gr.Column():
|
332 |
-
speech2text_en1 = gr.Textbox(label="English Text")
|
333 |
-
vietnamese_out_2 = gr.Textbox(label="Vietnamese Text")
|
334 |
-
translate_button_envi_2.click(lambda en_voice: inference_envi(en_voice), inputs=en_audio_1, outputs=[speech2text_en1, vietnamese_out_2])
|
335 |
-
gr.Examples(examples=en_example_voice,
|
336 |
-
inputs=[en_audio_1])
|
337 |
-
|
338 |
-
with gr.TabItem("En-Vi Realtime Translation"):
|
339 |
-
# with gr.Row():
|
340 |
-
# with gr.Column():
|
341 |
-
# en_audio_2 = gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True)
|
342 |
-
# with gr.Column():
|
343 |
-
# speech2text_en2 = gr.Textbox(label="English Text")
|
344 |
-
# vietnamese_out_3 = gr.Textbox(label="Vietnamese Text")
|
345 |
-
# en_audio_2.change(transcribe_en, [en_audio_2, speech2text_en2, vietnamese_out_3], [speech2text_en2, vietnamese_out_3])
|
346 |
-
# speech2text_en2, vietnamese_out_3 = transcribe_en(en_audio_2, speech2text_en2, vietnamese_out_3)
|
347 |
-
|
348 |
-
gr.Interface(
|
349 |
-
fn=transcribe_en_rd,
|
350 |
-
inputs=[
|
351 |
-
gr.Audio(source="microphone", type="filepath", streaming=True),
|
352 |
-
"state"
|
353 |
-
],
|
354 |
-
outputs=[
|
355 |
-
"textbox",
|
356 |
-
"state"
|
357 |
-
],
|
358 |
-
live=True).launch()
|
359 |
-
|
360 |
-
|
361 |
-
if __name__ == "__main__":
|
362 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|