Spaces:
Runtime error
Runtime error
Commit
·
468a13d
1
Parent(s):
1b245f0
update source
Browse files- .gitignore +7 -0
- README.md +4 -3
- app.py +278 -0
- en_speech_01.wav +0 -0
- en_speech_02.wav +0 -0
- en_speech_03.wav +0 -0
- packages.txt +1 -0
- requirements.txt +16 -0
- vi_speech_01.wav +0 -0
- vi_speech_02.wav +0 -0
- vi_speech_03.wav +0 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore everything in this directory
|
2 |
+
__pycache__
|
3 |
+
.idea
|
4 |
+
.git
|
5 |
+
.vs
|
6 |
+
.vscode
|
7 |
+
.ipynb_checkpoints
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.3.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: FantasticFour S2T MT Demo
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.3.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import nltk
|
3 |
+
import librosa
|
4 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
5 |
+
|
6 |
+
from transformers import pipeline, TranslationPipeline, AutoTokenizer, TranslationPipeline
|
7 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
8 |
+
from transformers.file_utils import cached_path, hf_bucket_url
|
9 |
+
import os, zipfile
|
10 |
+
from datasets import load_dataset
|
11 |
+
import torch
|
12 |
+
import kenlm
|
13 |
+
import torchaudio
|
14 |
+
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
|
15 |
+
device = torch.device(0 if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
"""Vietnamese speech2text"""
|
18 |
+
cache_dir = './cache/'
|
19 |
+
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
20 |
+
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
21 |
+
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
|
22 |
+
lm_file = cached_path(lm_file,cache_dir=cache_dir)
|
23 |
+
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
24 |
+
zip_ref.extractall(cache_dir)
|
25 |
+
lm_file = cache_dir + 'vi_lm_4grams.bin'
|
26 |
+
|
27 |
+
def get_decoder_ngram_model(tokenizer, ngram_lm_path):
|
28 |
+
vocab_dict = tokenizer.get_vocab()
|
29 |
+
sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
|
30 |
+
vocab = [x[1] for x in sort_vocab][:-2]
|
31 |
+
vocab_list = vocab
|
32 |
+
# convert ctc blank character representation
|
33 |
+
vocab_list[tokenizer.pad_token_id] = ""
|
34 |
+
# replace special characters
|
35 |
+
vocab_list[tokenizer.unk_token_id] = ""
|
36 |
+
# vocab_list[tokenizer.bos_token_id] = ""
|
37 |
+
# vocab_list[tokenizer.eos_token_id] = ""
|
38 |
+
# convert space character representation
|
39 |
+
vocab_list[tokenizer.word_delimiter_token_id] = " "
|
40 |
+
# specify ctc blank char index, since conventially it is the last entry of the logit matrix
|
41 |
+
alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id)
|
42 |
+
lm_model = kenlm.Model(ngram_lm_path)
|
43 |
+
decoder = BeamSearchDecoderCTC(alphabet,
|
44 |
+
language_model=LanguageModel(lm_model))
|
45 |
+
return decoder
|
46 |
+
ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file)
|
47 |
+
|
48 |
+
# define function to read in sound file
|
49 |
+
def speech_file_to_array_fn(path, max_seconds=10):
|
50 |
+
batch = {"file": path}
|
51 |
+
speech_array, sampling_rate = torchaudio.load(batch["file"])
|
52 |
+
if sampling_rate != 16000:
|
53 |
+
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
54 |
+
new_freq=16000)
|
55 |
+
speech_array = transform(speech_array)
|
56 |
+
speech_array = speech_array[0]
|
57 |
+
if max_seconds > 0:
|
58 |
+
speech_array = speech_array[:max_seconds*16000]
|
59 |
+
batch["speech"] = speech_array.numpy()
|
60 |
+
batch["sampling_rate"] = 16000
|
61 |
+
return batch
|
62 |
+
|
63 |
+
# tokenize
|
64 |
+
def speech2text_vi(audio):
|
65 |
+
# read in sound file
|
66 |
+
# load dummy dataset and read soundfiles
|
67 |
+
ds = speech_file_to_array_fn(audio.name)
|
68 |
+
# infer model
|
69 |
+
input_values = processor(
|
70 |
+
ds["speech"],
|
71 |
+
sampling_rate=ds["sampling_rate"],
|
72 |
+
return_tensors="pt"
|
73 |
+
).input_values
|
74 |
+
# decode ctc output
|
75 |
+
logits = vi_model(input_values).logits[0]
|
76 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
77 |
+
greedy_search_output = processor.decode(pred_ids)
|
78 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
79 |
+
return beam_search_output
|
80 |
+
|
81 |
+
|
82 |
+
"""English speech2text"""
|
83 |
+
nltk.download("punkt")
|
84 |
+
# Loading the model and the tokenizer
|
85 |
+
model_name = "facebook/wav2vec2-base-960h"
|
86 |
+
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
87 |
+
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
88 |
+
|
89 |
+
def load_data(input_file):
|
90 |
+
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
91 |
+
"""
|
92 |
+
# read the file
|
93 |
+
speech, sample_rate = librosa.load(input_file)
|
94 |
+
# make it 1-D
|
95 |
+
if len(speech.shape) > 1:
|
96 |
+
speech = speech[:, 0] + speech[:, 1]
|
97 |
+
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
98 |
+
if sample_rate != 16000:
|
99 |
+
speech = librosa.resample(speech, sample_rate, 16000)
|
100 |
+
return speech
|
101 |
+
|
102 |
+
def correct_casing(input_sentence):
|
103 |
+
""" This function is for correcting the casing of the generated transcribed text
|
104 |
+
"""
|
105 |
+
sentences = nltk.sent_tokenize(input_sentence)
|
106 |
+
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
107 |
+
|
108 |
+
|
109 |
+
def speech2text_en(input_file):
|
110 |
+
"""This function generates transcripts for the provided audio input
|
111 |
+
"""
|
112 |
+
speech = load_data(input_file)
|
113 |
+
# Tokenize
|
114 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
115 |
+
# Take logits
|
116 |
+
logits = eng_model(input_values).logits
|
117 |
+
# Take argmax
|
118 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
119 |
+
# Get the words from predicted word ids
|
120 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
121 |
+
# Output is all upper case
|
122 |
+
transcription = correct_casing(transcription.lower())
|
123 |
+
return transcription
|
124 |
+
|
125 |
+
|
126 |
+
"""Machine translation"""
|
127 |
+
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
128 |
+
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
129 |
+
# vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
130 |
+
# envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
131 |
+
|
132 |
+
vien_tokenizer = AutoTokenizer.from_pretrained(vien_model_checkpoint, return_tensors="pt")
|
133 |
+
vien_model = ORTModelForSeq2SeqLM.from_pretrained(vien_model_checkpoint)
|
134 |
+
vien_translator = TranslationPipeline(model=vien_model, tokenizer=vien_tokenizer,clean_up_tokenization_spaces=True, device=device)
|
135 |
+
|
136 |
+
envi_tokenizer = AutoTokenizer.from_pretrained(envi_model_checkpoint, return_tensors="pt")
|
137 |
+
envi_model = ORTModelForSeq2SeqLM.from_pretrained(envi_model_checkpoint)
|
138 |
+
envi_translator = TranslationPipeline(model=envi_model, tokenizer=envi_tokenizer,clean_up_tokenization_spaces=True, device=device)
|
139 |
+
|
140 |
+
|
141 |
+
def translate_vi2en(Vietnamese):
|
142 |
+
return vien_translator(Vietnamese)[0]['translation_text']
|
143 |
+
|
144 |
+
def translate_en2vi(English):
|
145 |
+
return envi_translator(English)[0]['translation_text']
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
""" Inference"""
|
151 |
+
def inference_vien(audio):
|
152 |
+
vi_text = speech2text_vi(audio)
|
153 |
+
en_text = translate_vi2en(vi_text)
|
154 |
+
return vi_text, en_text
|
155 |
+
|
156 |
+
def inference_envi(audio):
|
157 |
+
en_text = speech2text_en(audio)
|
158 |
+
vi_text = translate_en2vi(en_text)
|
159 |
+
return en_text, vi_text
|
160 |
+
|
161 |
+
def transcribe_vi(audio, state_vi="", state_en=""):
|
162 |
+
ds = speech_file_to_array_fn(audio.name)
|
163 |
+
# infer model
|
164 |
+
input_values = processor(
|
165 |
+
ds["speech"],
|
166 |
+
sampling_rate=ds["sampling_rate"],
|
167 |
+
return_tensors="pt"
|
168 |
+
).input_values
|
169 |
+
# decode ctc output
|
170 |
+
logits = vi_model(input_values).logits[0]
|
171 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
172 |
+
greedy_search_output = processor.decode(pred_ids)
|
173 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
174 |
+
state_vi += beam_search_output + " "
|
175 |
+
en_text = translate_vi2en(beam_search_output)
|
176 |
+
state_en += en_text + " "
|
177 |
+
return state_vi, state_en
|
178 |
+
|
179 |
+
def transcribe_en(audio, state_en="", state_vi=""):
|
180 |
+
speech = load_data(audio)
|
181 |
+
# Tokenize
|
182 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
183 |
+
# Take logits
|
184 |
+
logits = eng_model(input_values).logits
|
185 |
+
# Take argmax
|
186 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
187 |
+
# Get the words from predicted word ids
|
188 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
189 |
+
# Output is all upper case
|
190 |
+
transcription = correct_casing(transcription.lower())
|
191 |
+
state_en += transcription + "+"
|
192 |
+
vi_text = translate_en2vi(transcription)
|
193 |
+
state_vi += vi_text + "+"
|
194 |
+
return state_en, state_vi
|
195 |
+
|
196 |
+
def transcribe_vi_1(audio, state_en=""):
|
197 |
+
ds = speech_file_to_array_fn(audio.name)
|
198 |
+
# infer model
|
199 |
+
input_values = processor(
|
200 |
+
ds["speech"],
|
201 |
+
sampling_rate=ds["sampling_rate"],
|
202 |
+
return_tensors="pt"
|
203 |
+
).input_values
|
204 |
+
# decode ctc output
|
205 |
+
logits = vi_model(input_values).logits[0]
|
206 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
207 |
+
greedy_search_output = processor.decode(pred_ids)
|
208 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
209 |
+
en_text = translate_vi2en(beam_search_output)
|
210 |
+
state_en += en_text + " "
|
211 |
+
return state_en, state_en
|
212 |
+
|
213 |
+
def transcribe_en_1(audio, state_vi=""):
|
214 |
+
speech = load_data(audio)
|
215 |
+
# Tokenize
|
216 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
217 |
+
# Take logits
|
218 |
+
logits = eng_model(input_values).logits
|
219 |
+
# Take argmax
|
220 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
221 |
+
# Get the words from predicted word ids
|
222 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
223 |
+
# Output is all upper case
|
224 |
+
transcription = correct_casing(transcription.lower())
|
225 |
+
vi_text = translate_en2vi(transcription)
|
226 |
+
state_vi += vi_text + "+"
|
227 |
+
return state_vi, state_vi
|
228 |
+
|
229 |
+
"""Gradio demo"""
|
230 |
+
|
231 |
+
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
232 |
+
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
233 |
+
"Nếu như một câu nói có thể khiến em vui."]
|
234 |
+
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
235 |
+
|
236 |
+
en_example_text = ["According to a study by Statista, the global AI market is set to grow up to 54 percent every single year.",
|
237 |
+
"As one of the world's greatest cities, Air New Zealand is proud to add the Big Apple to its list of 29 international destinations.",
|
238 |
+
"And yet, earlier this month, I found myself at Halloween Horror Nights at Universal Orlando Resort, one of the most popular Halloween events in the US among hardcore horror buffs."
|
239 |
+
]
|
240 |
+
en_example_voice =[['en_speech_01.wav'], ['en_speech_02.wav'], ['en_speech_03.wav']]
|
241 |
+
|
242 |
+
|
243 |
+
with gr.Blocks() as demo:
|
244 |
+
with gr.Tabs():
|
245 |
+
with gr.TabItem("Vi-En Realtime Translation"):
|
246 |
+
gr.Interface(
|
247 |
+
fn=transcribe_vi_1,
|
248 |
+
inputs=[
|
249 |
+
gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True),
|
250 |
+
"state",
|
251 |
+
],
|
252 |
+
outputs= [
|
253 |
+
"text",
|
254 |
+
"state",
|
255 |
+
|
256 |
+
],
|
257 |
+
examples=vi_example_voice,
|
258 |
+
live=True).launch()
|
259 |
+
|
260 |
+
|
261 |
+
with gr.Tabs():
|
262 |
+
with gr.TabItem("En-Vi Realtime Translation"):
|
263 |
+
gr.Interface(
|
264 |
+
fn=transcribe_en_1,
|
265 |
+
inputs=[
|
266 |
+
gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True),
|
267 |
+
"state",
|
268 |
+
],
|
269 |
+
outputs= [
|
270 |
+
"text",
|
271 |
+
"state",
|
272 |
+
|
273 |
+
],
|
274 |
+
examples=en_example_voice,
|
275 |
+
live=True).launch()
|
276 |
+
|
277 |
+
if __name__ == "__main__":
|
278 |
+
demo.launch()
|
en_speech_01.wav
ADDED
Binary file (816 kB). View file
|
|
en_speech_02.wav
ADDED
Binary file (238 kB). View file
|
|
en_speech_03.wav
ADDED
Binary file (751 kB). View file
|
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libsndfile1
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.9.0
|
2 |
+
torchaudio==0.9.0
|
3 |
+
transformers==4.9.2
|
4 |
+
transformers[sentencepiece]
|
5 |
+
datasets==1.11.0
|
6 |
+
pyctcdecode==v0.1.0
|
7 |
+
speechbrain
|
8 |
+
pydub
|
9 |
+
kenlm
|
10 |
+
pyctcdecode
|
11 |
+
soundfile
|
12 |
+
ffmpeg-python
|
13 |
+
gradio
|
14 |
+
nltk
|
15 |
+
librosa
|
16 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
vi_speech_01.wav
ADDED
Binary file (120 kB). View file
|
|
vi_speech_02.wav
ADDED
Binary file (49.6 kB). View file
|
|
vi_speech_03.wav
ADDED
Binary file (76.8 kB). View file
|
|