File size: 15,081 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# python3.7
"""Converts StyleGAN2-ADA-PyTorch model to match this repository.

The models can be trained through OR released by the repository:

https://github.com/NVlabs/stylegan2-ada-pytorch
"""

import os
import sys
import re
import pickle
import warnings
from tqdm import tqdm
import numpy as np

import torch

from models import build_model
from utils.visualizer import HtmlPageVisualizer
from utils.visualizer import postprocess_image

__all__ = ['convert_stylegan2ada_pth_weight']

GAN_TPYE = 'stylegan2'
OFFICIAL_CODE_DIR = 'stylegan2ada_pth_official'
BASE_DIR = os.path.dirname(os.path.relpath(__file__))
CODE_PATH = os.path.join(BASE_DIR, OFFICIAL_CODE_DIR)

TRUNC_PSI = 0.5
TRUNC_LAYERS = 18
RANDOMIZE_NOISE = False
NOISE_MODE = 'random' if RANDOMIZE_NOISE else 'const'

# The following two dictionary of mapping patterns are modified from
# https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/legacy.py
G_PTH_TO_TF_VAR_MAPPING_PATTERN = {
    r'mapping\.w_avg':
        lambda:   f'dlatent_avg',
    r'mapping\.embed\.weight':
        lambda:   f'LabelEmbed/weight',
    r'mapping\.embed\.bias':
        lambda:   f'LabelEmbed/bias',
    r'mapping\.fc(\d+)\.weight':
        lambda i: f'Dense{i}/weight',
    r'mapping\.fc(\d+)\.bias':
        lambda i: f'Dense{i}/bias',
    r'synthesis\.b4\.const':
        lambda:   f'4x4/Const/const',
    r'synthesis\.b4\.conv1\.weight':
        lambda:   f'4x4/Conv/weight',
    r'synthesis\.b4\.conv1\.bias':
        lambda:   f'4x4/Conv/bias',
    r'synthesis\.b4\.conv1\.noise_const':
        lambda:   f'noise0',
    r'synthesis\.b4\.conv1\.noise_strength':
        lambda:   f'4x4/Conv/noise_strength',
    r'synthesis\.b4\.conv1\.affine\.weight':
        lambda:   f'4x4/Conv/mod_weight',
    r'synthesis\.b4\.conv1\.affine\.bias':
        lambda:   f'4x4/Conv/mod_bias',
    r'synthesis\.b(\d+)\.conv0\.weight':
        lambda r: f'{r}x{r}/Conv0_up/weight',
    r'synthesis\.b(\d+)\.conv0\.bias':
        lambda r: f'{r}x{r}/Conv0_up/bias',
    r'synthesis\.b(\d+)\.conv0\.noise_const':
        lambda r: f'noise{int(np.log2(int(r)))*2-5}',
    r'synthesis\.b(\d+)\.conv0\.noise_strength':
        lambda r: f'{r}x{r}/Conv0_up/noise_strength',
    r'synthesis\.b(\d+)\.conv0\.affine\.weight':
        lambda r: f'{r}x{r}/Conv0_up/mod_weight',
    r'synthesis\.b(\d+)\.conv0\.affine\.bias':
        lambda r: f'{r}x{r}/Conv0_up/mod_bias',
    r'synthesis\.b(\d+)\.conv1\.weight':
        lambda r: f'{r}x{r}/Conv1/weight',
    r'synthesis\.b(\d+)\.conv1\.bias':
        lambda r: f'{r}x{r}/Conv1/bias',
    r'synthesis\.b(\d+)\.conv1\.noise_const':
        lambda r: f'noise{int(np.log2(int(r)))*2-4}',
    r'synthesis\.b(\d+)\.conv1\.noise_strength':
        lambda r: f'{r}x{r}/Conv1/noise_strength',
    r'synthesis\.b(\d+)\.conv1\.affine\.weight':
        lambda r: f'{r}x{r}/Conv1/mod_weight',
    r'synthesis\.b(\d+)\.conv1\.affine\.bias':
        lambda r: f'{r}x{r}/Conv1/mod_bias',
    r'synthesis\.b(\d+)\.torgb\.weight':
        lambda r: f'{r}x{r}/ToRGB/weight',
    r'synthesis\.b(\d+)\.torgb\.bias':
        lambda r: f'{r}x{r}/ToRGB/bias',
    r'synthesis\.b(\d+)\.torgb\.affine\.weight':
        lambda r: f'{r}x{r}/ToRGB/mod_weight',
    r'synthesis\.b(\d+)\.torgb\.affine\.bias':
        lambda r: f'{r}x{r}/ToRGB/mod_bias',
    r'synthesis\.b(\d+)\.skip\.weight':
        lambda r: f'{r}x{r}/Skip/weight',
    r'.*\.resample_filter':
        None,
}
D_PTH_TO_TF_VAR_MAPPING_PATTERN = {
    r'b(\d+)\.fromrgb\.weight':
        lambda r:    f'{r}x{r}/FromRGB/weight',
    r'b(\d+)\.fromrgb\.bias':
        lambda r:    f'{r}x{r}/FromRGB/bias',
    r'b(\d+)\.conv(\d+)\.weight':
        lambda r, i: f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight',
    r'b(\d+)\.conv(\d+)\.bias':
        lambda r, i: f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias',
    r'b(\d+)\.skip\.weight':
        lambda r:    f'{r}x{r}/Skip/weight',
    r'mapping\.embed\.weight':
        lambda:      f'LabelEmbed/weight',
    r'mapping\.embed\.bias':
        lambda:      f'LabelEmbed/bias',
    r'mapping\.fc(\d+)\.weight':
        lambda i:    f'Mapping{i}/weight',
    r'mapping\.fc(\d+)\.bias':
        lambda i:    f'Mapping{i}/bias',
    r'b4\.conv\.weight':
        lambda:      f'4x4/Conv/weight',
    r'b4\.conv\.bias':
        lambda:      f'4x4/Conv/bias',
    r'b4\.fc\.weight':
        lambda:      f'4x4/Dense0/weight',
    r'b4\.fc\.bias':
        lambda:      f'4x4/Dense0/bias',
    r'b4\.out\.weight':
        lambda:      f'Output/weight',
    r'b4\.out\.bias':
        lambda:      f'Output/bias',
    r'.*\.resample_filter':
        None,
}


def convert_stylegan2ada_pth_weight(src_weight_path,
                                    dst_weight_path,
                                    test_num=10,
                                    save_test_image=False,
                                    verbose=False):
    """Converts the pre-trained StyleGAN2-ADA-PyTorch weights.

    Args:
        src_weight_path: Path to the source model to load weights from.
        dst_weight_path: Path to the target model to save converted weights.
        test_num: Number of samples used to test the conversion. (default: 10)
        save_test_image: Whether to save the test images. (default: False)
        verbose: Whether to print verbose log message. (default: False)
    """

    print(f'========================================')
    print(f'Loading source weights from `{src_weight_path}` ...')
    sys.path.insert(0, CODE_PATH)
    with open(src_weight_path, 'rb') as f:
        model = pickle.load(f)
    sys.path.pop(0)
    print(f'Successfully loaded!')
    print(f'--------------------')

    z_space_dim = model['G'].z_dim
    label_size = model['G'].c_dim
    w_space_dim = model['G'].w_dim
    image_channels = model['G'].img_channels
    resolution = model['G'].img_resolution
    repeat_w = True

    print(f'Converting source weights (G) to target ...')
    G_vars = dict(model['G'].named_parameters())
    G_vars.update(dict(model['G'].named_buffers()))
    G = build_model(gan_type=GAN_TPYE,
                    module='generator',
                    resolution=resolution,
                    z_space_dim=z_space_dim,
                    w_space_dim=w_space_dim,
                    label_size=label_size,
                    repeat_w=repeat_w,
                    image_channels=image_channels)
    G_state_dict = G.state_dict()
    official_tf_to_pth_var_mapping = {}
    for name in G_vars.keys():
        for pattern, fn in G_PTH_TO_TF_VAR_MAPPING_PATTERN.items():
            match = re.fullmatch(pattern, name)
            if match:
                if fn is not None:
                    official_tf_to_pth_var_mapping[fn(*match.groups())] = name
                break
    for dst_var_name, tf_var_name in G.pth_to_tf_var_mapping.items():
        assert tf_var_name in official_tf_to_pth_var_mapping
        assert dst_var_name in G_state_dict
        src_var_name = official_tf_to_pth_var_mapping[tf_var_name]
        assert src_var_name in G_vars
        if verbose:
            print(f'    Converting `{src_var_name}` to `{dst_var_name}`.')
        var = G_vars[src_var_name].data
        if 'weight' in tf_var_name:
            if 'Conv0_up/weight' in tf_var_name:
                var = var.flip(2, 3)
            elif 'Skip' in tf_var_name:
                var = var.flip(2, 3)
        if 'bias' in tf_var_name:
            if 'mod_bias' in tf_var_name:
                var = var - 1
        if 'Const' in tf_var_name:
            var = var.unsqueeze(0)
        if 'noise' in tf_var_name and 'noise_' not in tf_var_name:
            var = var.unsqueeze(0).unsqueeze(0)
        G_state_dict[dst_var_name] = var
    print(f'Successfully converted!')
    print(f'--------------------')

    print(f'Converting source weights (Gs) to target ...')
    Gs_vars = dict(model['G_ema'].named_parameters())
    Gs_vars.update(dict(model['G_ema'].named_buffers()))
    Gs = build_model(gan_type=GAN_TPYE,
                     module='generator',
                     resolution=resolution,
                     z_space_dim=z_space_dim,
                     w_space_dim=w_space_dim,
                     label_size=label_size,
                     repeat_w=repeat_w,
                     image_channels=image_channels)
    Gs_state_dict = Gs.state_dict()
    official_tf_to_pth_var_mapping = {}
    for name in Gs_vars.keys():
        for pattern, fn in G_PTH_TO_TF_VAR_MAPPING_PATTERN.items():
            match = re.fullmatch(pattern, name)
            if match:
                if fn is not None:
                    official_tf_to_pth_var_mapping[fn(*match.groups())] = name
                break
    for dst_var_name, tf_var_name in Gs.pth_to_tf_var_mapping.items():
        assert tf_var_name in official_tf_to_pth_var_mapping
        assert dst_var_name in Gs_state_dict
        src_var_name = official_tf_to_pth_var_mapping[tf_var_name]
        assert src_var_name in Gs_vars
        if verbose:
            print(f'    Converting `{src_var_name}` to `{dst_var_name}`.')
        var = Gs_vars[src_var_name].data
        if 'weight' in tf_var_name:
            if 'Conv0_up/weight' in tf_var_name:
                var = var.flip(2, 3)
            elif 'Skip' in tf_var_name:
                var = var.flip(2, 3)
        if 'bias' in tf_var_name:
            if 'mod_bias' in tf_var_name:
                var = var - 1
        if 'Const' in tf_var_name:
            var = var.unsqueeze(0)
        if 'noise' in tf_var_name and 'noise_' not in tf_var_name:
            var = var.unsqueeze(0).unsqueeze(0)
        Gs_state_dict[dst_var_name] = var
    print(f'Successfully converted!')
    print(f'--------------------')

    print(f'Converting source weights (D) to target ...')
    D_vars = dict(model['D'].named_parameters())
    D_vars.update(dict(model['D'].named_buffers()))
    D = build_model(gan_type=GAN_TPYE,
                    module='discriminator',
                    resolution=resolution,
                    label_size=label_size,
                    image_channels=image_channels)
    D_state_dict = D.state_dict()
    official_tf_to_pth_var_mapping = {}
    for name in D_vars.keys():
        for pattern, fn in D_PTH_TO_TF_VAR_MAPPING_PATTERN.items():
            match = re.fullmatch(pattern, name)
            if match:
                if fn is not None:
                    official_tf_to_pth_var_mapping[fn(*match.groups())] = name
                break
    for dst_var_name, tf_var_name in D.pth_to_tf_var_mapping.items():
        assert tf_var_name in official_tf_to_pth_var_mapping
        assert dst_var_name in D_state_dict
        src_var_name = official_tf_to_pth_var_mapping[tf_var_name]
        assert src_var_name in D_vars
        if verbose:
            print(f'    Converting `{src_var_name}` to `{dst_var_name}`.')
        var = D_vars[src_var_name].data
        D_state_dict[dst_var_name] = var
    print(f'Successfully converted!')
    print(f'--------------------')

    print(f'Saving target weights to `{dst_weight_path}` ...')
    state_dict = {
        'generator': G_state_dict,
        'discriminator': D_state_dict,
        'generator_smooth': Gs_state_dict,
    }
    torch.save(state_dict, dst_weight_path)
    print(f'Successfully saved!')
    print(f'--------------------')

    # Start testing if needed.
    if test_num <= 0:
        warnings.warn(f'Skip testing the converted weights!')
        return

    if save_test_image:
        html = HtmlPageVisualizer(num_rows=test_num, num_cols=3)
        html.set_headers(['Index', 'Before Conversion', 'After Conversion'])
        for i in range(test_num):
            html.set_cell(i, 0, text=f'{i}')

    print(f'Testing conversion results ...')
    G.load_state_dict(G_state_dict)
    D.load_state_dict(D_state_dict)
    Gs.load_state_dict(Gs_state_dict)
    G.eval().cuda()
    D.eval().cuda()
    Gs.eval().cuda()
    model['G'].eval().cuda()
    model['D'].eval().cuda()
    model['G_ema'].eval().cuda()

    gs_distance = 0.0
    dg_distance = 0.0
    for i in tqdm(range(test_num)):
        # Test Gs(z).
        code = np.random.randn(1, z_space_dim)
        code = torch.from_numpy(code).type(torch.FloatTensor).cuda()
        if label_size:
            label_id = np.random.randint(label_size)
            label = np.zeros((1, label_size), np.float32)
            label[0, label_id] = 1.0
            label = torch.from_numpy(label).type(torch.FloatTensor).cuda()
        else:
            label_id = 0
            label = None

        src_output = model['G_ema'](code,
                                    label,
                                    truncation_psi=TRUNC_PSI,
                                    truncation_cutoff=TRUNC_LAYERS,
                                    noise_mode=NOISE_MODE)
        src_output = src_output.detach().cpu().numpy()
        dst_output = Gs(code,
                        label=label,
                        trunc_psi=TRUNC_PSI,
                        trunc_layers=TRUNC_LAYERS,
                        randomize_noise=RANDOMIZE_NOISE)['image']
        dst_output = dst_output.detach().cpu().numpy()
        distance = np.average(np.abs(src_output - dst_output))
        if verbose:
            print(f'    Test {i:03d}: Gs distance {distance:.6e}.')
        gs_distance += distance

        if save_test_image:
            html.set_cell(i, 1, image=postprocess_image(src_output)[0])
            html.set_cell(i, 2, image=postprocess_image(dst_output)[0])

        # Test D(G(z)).
        code = np.random.randn(1, z_space_dim)
        code = torch.from_numpy(code).type(torch.FloatTensor).cuda()
        if label_size:
            label_id = np.random.randint(label_size)
            label = np.zeros((1, label_size), np.float32)
            label[0, label_id] = 1.0
            label = torch.from_numpy(label).type(torch.FloatTensor).cuda()
        else:
            label_id = 0
            label = None
        src_image = model['G'](code,
                               label,
                               truncation_psi=TRUNC_PSI,
                               truncation_cutoff=TRUNC_LAYERS,
                               noise_mode=NOISE_MODE)
        src_output = model['D'](src_image, label)
        src_output = src_output.detach().cpu().numpy()
        dst_image = G(code,
                      label=label,
                      trunc_psi=TRUNC_PSI,
                      trunc_layers=TRUNC_LAYERS,
                      randomize_noise=RANDOMIZE_NOISE)['image']
        dst_output = D(dst_image, label)
        dst_output = dst_output.detach().cpu().numpy()
        distance = np.average(np.abs(src_output - dst_output))
        if verbose:
            print(f'    Test {i:03d}: D(G) distance {distance:.6e}.')
        dg_distance += distance

    print(f'Average Gs distance is {gs_distance / test_num:.6e}.')
    print(f'Average D(G) distance is {dg_distance / test_num:.6e}.')
    print(f'========================================')

    if save_test_image:
        html.save(f'{dst_weight_path}.conversion_test.html')