Spaces:
Running
Running
Commit
•
eb008d8
1
Parent(s):
c167550
make sentence splitting optional
Browse files
app.py
CHANGED
@@ -17,11 +17,23 @@ logging.basicConfig(filename="logs.txt", level=logging.INFO)
|
|
17 |
logging.getLogger().addHandler(logging.FileHandler(log_file))
|
18 |
|
19 |
|
20 |
-
def load_corpus(
|
|
|
|
|
21 |
if verbose:
|
22 |
gr.Info("Loading files...")
|
23 |
reader = SimpleDirectoryReader(input_files=files)
|
24 |
docs = reader.load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if verbose:
|
26 |
print(f"Loaded {len(docs)} docs")
|
27 |
|
@@ -48,12 +60,18 @@ def upload_file(
|
|
48 |
chunk_overlap: int = 0,
|
49 |
hub_id: str = None,
|
50 |
private: bool = False,
|
|
|
51 |
oauth_token: gr.OAuthToken = None,
|
52 |
):
|
53 |
print("loading files")
|
54 |
file_paths = [file.name for file in files]
|
55 |
print("parsing into sentences")
|
56 |
-
corpus = load_corpus(
|
|
|
|
|
|
|
|
|
|
|
57 |
print("Creating dataset")
|
58 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
59 |
message = f"Dataset created has: \n - {len(dataset)} rows"
|
@@ -99,7 +117,7 @@ The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.lla
|
|
99 |
|
100 |
### Usage:
|
101 |
- Login: Start by logging in to your Hugging Face account using the provided login button.
|
102 |
-
- Set Parameters: Customize the chunk size and overlap according to your requirements.
|
103 |
- Upload Files: Use the upload button to load file(s) for processing.
|
104 |
- Preview Dataset: View the created dataset in a dataframe format before uploading it to the Hugging Face Hub.
|
105 |
- Upload to Hub: Optionally, specify the Hub ID and choose whether to make the dataset private before pushing it to the Hugging Face Hub."""
|
@@ -118,6 +136,7 @@ with gr.Blocks() as demo:
|
|
118 |
)
|
119 |
hub_id = gr.Textbox(value=None, label="Hub ID")
|
120 |
with gr.Row():
|
|
|
121 |
chunk_size = gr.Number(
|
122 |
256,
|
123 |
label="Chunk size (size to split text into)",
|
@@ -143,7 +162,14 @@ with gr.Blocks() as demo:
|
|
143 |
corpus_preview_df = gr.DataFrame()
|
144 |
upload_button.upload(
|
145 |
upload_file,
|
146 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
outputs=[corpus_preview_df, summary],
|
148 |
)
|
149 |
demo.launch(debug=True)
|
|
|
17 |
logging.getLogger().addHandler(logging.FileHandler(log_file))
|
18 |
|
19 |
|
20 |
+
def load_corpus(
|
21 |
+
files, chunk_size=256, chunk_overlap=0, verbose=True, split_sentences=True
|
22 |
+
):
|
23 |
if verbose:
|
24 |
gr.Info("Loading files...")
|
25 |
reader = SimpleDirectoryReader(input_files=files)
|
26 |
docs = reader.load_data()
|
27 |
+
if split_sentences is False:
|
28 |
+
gr.Info(
|
29 |
+
"Skipping sentence splitting. Each file will be a single row in the dataset."
|
30 |
+
)
|
31 |
+
return {doc.id_: doc.text for doc in docs}
|
32 |
+
if split_sentences:
|
33 |
+
return split_corpus(verbose, docs, chunk_size, chunk_overlap)
|
34 |
+
|
35 |
+
|
36 |
+
def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
37 |
if verbose:
|
38 |
print(f"Loaded {len(docs)} docs")
|
39 |
|
|
|
60 |
chunk_overlap: int = 0,
|
61 |
hub_id: str = None,
|
62 |
private: bool = False,
|
63 |
+
split_sentences: bool = True,
|
64 |
oauth_token: gr.OAuthToken = None,
|
65 |
):
|
66 |
print("loading files")
|
67 |
file_paths = [file.name for file in files]
|
68 |
print("parsing into sentences")
|
69 |
+
corpus = load_corpus(
|
70 |
+
file_paths,
|
71 |
+
chunk_size=chunk_size,
|
72 |
+
chunk_overlap=chunk_overlap,
|
73 |
+
split_sentences=split_sentences,
|
74 |
+
)
|
75 |
print("Creating dataset")
|
76 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
77 |
message = f"Dataset created has: \n - {len(dataset)} rows"
|
|
|
117 |
|
118 |
### Usage:
|
119 |
- Login: Start by logging in to your Hugging Face account using the provided login button.
|
120 |
+
- Set Parameters: Customize the chunk size and overlap according to your requirements. If you want to split the text into chunks, check the 'Split sentences' box (on by default).
|
121 |
- Upload Files: Use the upload button to load file(s) for processing.
|
122 |
- Preview Dataset: View the created dataset in a dataframe format before uploading it to the Hugging Face Hub.
|
123 |
- Upload to Hub: Optionally, specify the Hub ID and choose whether to make the dataset private before pushing it to the Hugging Face Hub."""
|
|
|
136 |
)
|
137 |
hub_id = gr.Textbox(value=None, label="Hub ID")
|
138 |
with gr.Row():
|
139 |
+
split_sentences = gr.Checkbox(True, label="Split sentences?")
|
140 |
chunk_size = gr.Number(
|
141 |
256,
|
142 |
label="Chunk size (size to split text into)",
|
|
|
162 |
corpus_preview_df = gr.DataFrame()
|
163 |
upload_button.upload(
|
164 |
upload_file,
|
165 |
+
inputs=[
|
166 |
+
upload_button,
|
167 |
+
chunk_size,
|
168 |
+
chunk_overlap,
|
169 |
+
hub_id,
|
170 |
+
private,
|
171 |
+
split_sentences,
|
172 |
+
],
|
173 |
outputs=[corpus_preview_df, summary],
|
174 |
)
|
175 |
demo.launch(debug=True)
|