import logging from pathlib import Path import gradio as gr from datasets import Dataset from gradio_log import Log from huggingface_hub import DatasetCard from llama_index.core import SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import MetadataMode from tqdm.auto import tqdm log_file = "logs.txt" Path(log_file).touch(exist_ok=True) logging.basicConfig(filename="logs.txt", level=logging.INFO) logging.getLogger().addHandler(logging.FileHandler(log_file)) def load_corpus( files, chunk_size=256, chunk_overlap=0, verbose=True, split_sentences=True ): if verbose: gr.Info("Loading files...") reader = SimpleDirectoryReader(input_files=files) docs = reader.load_data() if split_sentences is False: gr.Info( "Skipping sentence splitting. Each file will be a single row in the dataset." ) return {doc.id_: doc.text for doc in docs} if split_sentences: return split_corpus(verbose, docs, chunk_size, chunk_overlap) def split_corpus(verbose, docs, chunk_size, chunk_overlap): if verbose: gr.Info(f"Loaded {len(docs)} docs") parser = SentenceSplitter.from_defaults( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) nodes = parser.get_nodes_from_documents(docs, show_progress=verbose) if verbose: gr.Info(f"Parsed {len(nodes)} nodes") docs = { node.node_id: node.get_content(metadata_mode=MetadataMode.NONE) for node in tqdm(nodes) } # remove empty docs docs = {k: v for k, v in docs.items() if v} return docs def upload_and_preview( files, chunk_size: int = 256, chunk_overlap: int = 0, split_sentences: bool = True, ): print("loading files") file_paths = [file.name for file in files] print("parsing into sentences") corpus = load_corpus( file_paths, chunk_size=chunk_size, chunk_overlap=chunk_overlap, split_sentences=split_sentences, ) gr.Info("Creating dataset") dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()}) message = f"Files uploaded and dataset preview created:\n - {len(dataset)} rows" state = { "file_paths": file_paths, "dataset": dataset, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, } return state, dataset.to_pandas(), message def preview_dataset( state, chunk_size: int = 256, chunk_overlap: int = 0, split_sentences: bool = True, ): if not state.get("file_paths"): raise gr.Error("Please upload files first.") print("parsing into sentences") corpus = load_corpus( state["file_paths"], chunk_size=chunk_size, chunk_overlap=chunk_overlap, split_sentences=split_sentences, ) print("Creating dataset") dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()}) message = f"Dataset preview updated:\n - {len(dataset)} rows" state["dataset"] = dataset state["chunk_size"] = chunk_size state["chunk_overlap"] = chunk_overlap return state, dataset.to_pandas(), message def upload_to_hub( state, hub_id: str = None, private: bool = False, oauth_token: gr.OAuthToken = None, ): if not state.get("dataset"): raise gr.Error("Please preview the dataset first.") dataset = state["dataset"] chunk_size = state["chunk_size"] chunk_overlap = state["chunk_overlap"] message = f"Dataset has: \n - {len(dataset)} rows" if hub_id: if oauth_token is not None: gr.Info("Uploading dataset to the Hugging Face Hub...") dataset.push_to_hub(hub_id, token=oauth_token.token, private=private) update_dataset_card(hub_id, oauth_token.token, chunk_size, chunk_overlap) message += ( f"\n\nUploaded to [{hub_id}](https://huggingface.co/datasets/{hub_id})" ) else: raise gr.Error("Please login to Hugging Face Hub to push to hub") return message def update_dataset_card( hub_id, token, chunk_size, chunk_overlap, ): card = DatasetCard.load(hub_id, token=token) if not card.text: # add template description to card text card.text += f"""This dataset was created using [Corpus Creator](https://huggingface.co/spaces/davanstrien/corpus-creator). This dataset was created by parsing a corpus of text files into chunks of sentences using Llama Index. This processing was done with a chunk size of {chunk_size} and a chunk overlap of {chunk_overlap}.""" tags = card.data.get("tags", []) tags.append("corpus-creator") card.data["tags"] = tags card.push_to_hub(hub_id, token=token) description = """ Corpus Creator is a tool designed to help you easily convert a collection of text files into a dataset suitable for various natural language processing (NLP) tasks. In particular the app is focused on splitting texts into chunks of a specified size and overlap. This can be useful for preparing data for synthetic data generation, pipelines or annotation tasks. See an [example dataset](https://huggingface.co/datasets/davanstrien/MOH-Bethnal-Green) created using this tool starting from a collection of plain text files. The resulting text chunks are stored in a dataset that can be previewed and uploaded to the Hugging Face Hub for easy sharing and access by the community. The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/modules/?h=sentencesplitter#sentencesplitter) classes. """ with gr.Blocks() as demo: state = gr.State({}) gr.HTML( """

Corpus Creator

📁 From random files to a Hugging Face dataset in a few steps 📁
""" ) gr.Markdown(description) gr.Markdown( "### 1. Upload Files\nClick 'Upload Files' to select text file(s). A preview will generate automatically" ) with gr.Row(): upload_button = gr.File( file_types=["text"], file_count="multiple", height=50, interactive=True, label="Upload Files", ) gr.Markdown(""" ### 2. Adjust Parameters for Chunking Text (Optional) Customize the chunk size, overlap, and sentence splitting option according to your requirements. """) with gr.Row(): split_sentences = gr.Checkbox(True, label="Split sentences?") chunk_size = gr.Number( 256, label="Chunk size (size to split text into)", minimum=10, maximum=4096, step=1, ) chunk_overlap = gr.Number( 0, label="Chunk overlap (overlap size between chunks)", minimum=0, maximum=4096, step=1, ) gr.Markdown( "### 3. Update Preview\nClick 'Update Preview' to see changes based on new parameters." ) update_preview_button = gr.Button("Update Preview") corpus_preview_df = gr.DataFrame(label="Dataset Preview") preview_summary = gr.Markdown() gr.Markdown("""### 4. Upload to Hub After adjusting parameters and previewing the dataset, you can upload it to the Hugging Face Hub. Make sure to sign in to your Hugging Face account. Specify the Hub ID and choose whether to make the dataset private. Click 'Upload to Hub' to complete the process. """) with gr.Row(): gr.LoginButton() with gr.Column(): hub_id = gr.Textbox(value=None, label="Hub ID") private = gr.Checkbox(False, label="Upload dataset to a private repo?") upload_hub_button = gr.Button("Upload to Hub") upload_summary = gr.Markdown() with gr.Accordion("detailed logs", open=False): Log(log_file, dark=True, xterm_font_size=12) upload_button.upload( upload_and_preview, inputs=[upload_button, chunk_size, chunk_overlap, split_sentences], outputs=[state, corpus_preview_df, preview_summary], ) update_preview_button.click( preview_dataset, inputs=[state, chunk_size, chunk_overlap, split_sentences], outputs=[state, corpus_preview_df, preview_summary], ) upload_hub_button.click( upload_to_hub, inputs=[state, hub_id, private], outputs=[upload_summary], ) demo.launch(debug=True)