File size: 8,084 Bytes
0c77e14
 
 
 
f040cda
95c6c39
0c77e14
 
 
 
 
 
89d7d7b
0c77e14
0cb7b64
0c77e14
 
 
 
 
 
90d6ec0
 
 
 
0c77e14
 
734af3d
0c77e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734af3d
 
89d7d7b
734af3d
89d7d7b
734af3d
 
 
 
0c77e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f4e02
0c77e14
 
 
 
95c6c39
0c77e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "datasets",
#     "flashinfer-python",
#     "hf_transfer",
#     "huggingface-hub[hf_xet]",
#     "polars",
#     "stamina",
#     "transformers",
#     "vllm",
#     "tqdm",
#     "setuptools",
# ]
# ///
import argparse
import logging
import os
import sys
from typing import Optional

# Set environment variables to speed up model loading
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["VLLM_ATTENTION_BACKEND"] = "FLASHINFER"

import polars as pl
from datasets import Dataset, load_dataset
from huggingface_hub import login, dataset_info, snapshot_download
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)


def format_prompt(content: str, card_type: str, tokenizer) -> str:
    """Format content as a prompt for the model."""
    if card_type == "model":
        messages = [{"role": "user", "content": f"<MODEL_CARD>{content[:4000]}"}]
    else:
        messages = [{"role": "user", "content": f"<DATASET_CARD>{content[:4000]}"}]

    return tokenizer.apply_chat_template(
        messages, add_generation_prompt=True, tokenize=False
    )


def load_and_filter_data(
    dataset_id: str, card_type: str, min_likes: int = 1, min_downloads: int = 1
) -> pl.DataFrame:
    """Load and filter dataset/model data."""
    logger.info(f"Loading data from {dataset_id}")
    ds = load_dataset(dataset_id, split="train")
    df = ds.to_polars().lazy()

    # Extract content after YAML frontmatter
    df = df.with_columns(
        [
            pl.col("card")
            .str.replace_all(r"^---\n[\s\S]*?\n---\n", "", literal=False)
            .str.strip_chars()
            .alias("post_yaml_content")
        ]
    )

    # Apply filters
    df = df.filter(pl.col("post_yaml_content").str.len_bytes() > 200)
    df = df.filter(pl.col("post_yaml_content").str.len_bytes() < 120_000)

    if card_type == "model":
        df = df.filter(pl.col("likes") >= min_likes)
        df = df.filter(pl.col("downloads") >= min_downloads)

    df_filtered = df.collect()
    logger.info(f"Filtered dataset has {len(df_filtered)} items")
    return df_filtered


def generate_summaries(
    model_id: str,
    input_dataset_id: str,
    output_dataset_id: str,
    card_type: str = "dataset",
    max_tokens: int = 120,
    temperature: float = 0.6,
    batch_size: int = 1000,
    min_likes: int = 1,
    min_downloads: int = 1,
    hf_token: Optional[str] = None,
):
    """Main function to generate summaries."""

    # Login if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Load and filter data
    df_filtered = load_and_filter_data(
        input_dataset_id, card_type, min_likes, min_downloads
    )

    # Download model to local directory first
    logger.info(f"Downloading model {model_id} to local directory...")
    local_model_path = snapshot_download(repo_id=model_id, resume_download=True)
    logger.info(f"Model downloaded to: {local_model_path}")

    # Initialize model and tokenizer from local path
    logger.info(f"Initializing vLLM model from local path: {local_model_path}")
    llm = LLM(model=local_model_path)
    tokenizer = AutoTokenizer.from_pretrained(local_model_path)
    sampling_params = SamplingParams(
        temperature=temperature,
        max_tokens=max_tokens,
    )

    # Prepare prompts
    logger.info("Preparing prompts")
    post_yaml_contents = df_filtered["post_yaml_content"].to_list()
    prompts = [
        format_prompt(content, card_type, tokenizer)
        for content in tqdm(post_yaml_contents, desc="Formatting prompts")
    ]

    # Generate summaries in batches
    logger.info(f"Generating summaries for {len(prompts)} items")
    all_outputs = []

    for i in tqdm(range(0, len(prompts), batch_size), desc="Generating summaries"):
        batch_prompts = prompts[i : i + batch_size]
        outputs = llm.generate(batch_prompts, sampling_params)
        all_outputs.extend(outputs)

    # Extract clean results
    clean_results = [output.outputs[0].text.strip() for output in all_outputs]

    # Create dataset and add summaries
    ds = Dataset.from_polars(df_filtered)
    ds = ds.add_column("summary", clean_results)

    # Push to hub
    logger.info(f"Pushing dataset to hub: {output_dataset_id}")
    ds.push_to_hub(output_dataset_id, token=HF_TOKEN)
    logger.info("Dataset successfully pushed to hub")


def main():
    parser = argparse.ArgumentParser(
        description="Generate summaries for Hugging Face datasets or models using vLLM"
    )
    parser.add_argument(
        "model_id",
        help="Model ID for summary generation (e.g., davanstrien/SmolLM2-135M-tldr-sft-2025-03-12_19-02)",
    )
    parser.add_argument(
        "input_dataset_id",
        help="Input dataset ID (e.g., librarian-bots/dataset_cards_with_metadata)",
    )
    parser.add_argument(
        "output_dataset_id", help="Output dataset ID where results will be saved"
    )
    parser.add_argument(
        "--card-type",
        choices=["dataset", "model"],
        default="dataset",
        help="Type of cards to process (default: dataset)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=120,
        help="Maximum tokens for summary generation (default: 120)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.6,
        help="Temperature for generation (default: 0.6)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=1000,
        help="Batch size for processing (default: 1000)",
    )
    parser.add_argument(
        "--min-likes",
        type=int,
        default=1,
        help="Minimum likes filter for models (default: 1)",
    )
    parser.add_argument(
        "--min-downloads",
        type=int,
        default=1,
        help="Minimum downloads filter for models (default: 1)",
    )
    parser.add_argument(
        "--hf-token", help="Hugging Face token (uses HF_TOKEN env var if not provided)"
    )

    args = parser.parse_args()

    generate_summaries(
        model_id=args.model_id,
        input_dataset_id=args.input_dataset_id,
        output_dataset_id=args.output_dataset_id,
        card_type=args.card_type,
        max_tokens=args.max_tokens,
        temperature=args.temperature,
        batch_size=args.batch_size,
        min_likes=args.min_likes,
        min_downloads=args.min_downloads,
        hf_token=args.hf_token,
    )


if __name__ == "__main__":
    if len(sys.argv) == 1:
        # Show example hfjobs command when run without arguments
        print("Example hfjobs command:")
        print(
            "hfjobs run --flavor l4x1 --secret HF_TOKEN=hf_*** ghcr.io/astral-sh/uv:debian /bin/bash -c '"
        )
        print("apt-get update && apt-get install -y python3-dev gcc && \\")
        print("export HOME=/tmp && \\")
        print("export USER=dummy && \\")
        print("export TORCHINDUCTOR_CACHE_DIR=/tmp/torch-inductor && \\")
        print("uv run generate_summaries_uv.py \\")
        print("  davanstrien/Smol-Hub-tldr \\")
        print("  librarian-bots/dataset_cards_with_metadata \\")
        print("  your-username/datasets_with_summaries \\")
        print("  --card-type dataset \\")
        print("  --batch-size 2000")
        print("' --project summary-generation --name dataset-summaries")
        print()
        print("For models:")
        print("uv run generate_summaries_uv.py \\")
        print("  davanstrien/SmolLM2-135M-tldr-sft-2025-03-12_19-02 \\")
        print("  librarian-bots/model_cards_with_metadata \\")
        print("  your-username/models_with_summaries \\")
        print("  --card-type model \\")
        print("  --min-likes 5 \\")
        print("  --min-downloads 1000")
    else:
        main()