Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,084 Bytes
0c77e14 f040cda 95c6c39 0c77e14 89d7d7b 0c77e14 0cb7b64 0c77e14 90d6ec0 0c77e14 734af3d 0c77e14 734af3d 89d7d7b 734af3d 89d7d7b 734af3d 0c77e14 41f4e02 0c77e14 95c6c39 0c77e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "flashinfer-python",
# "hf_transfer",
# "huggingface-hub[hf_xet]",
# "polars",
# "stamina",
# "transformers",
# "vllm",
# "tqdm",
# "setuptools",
# ]
# ///
import argparse
import logging
import os
import sys
from typing import Optional
# Set environment variables to speed up model loading
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["VLLM_ATTENTION_BACKEND"] = "FLASHINFER"
import polars as pl
from datasets import Dataset, load_dataset
from huggingface_hub import login, dataset_info, snapshot_download
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
def format_prompt(content: str, card_type: str, tokenizer) -> str:
"""Format content as a prompt for the model."""
if card_type == "model":
messages = [{"role": "user", "content": f"<MODEL_CARD>{content[:4000]}"}]
else:
messages = [{"role": "user", "content": f"<DATASET_CARD>{content[:4000]}"}]
return tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
def load_and_filter_data(
dataset_id: str, card_type: str, min_likes: int = 1, min_downloads: int = 1
) -> pl.DataFrame:
"""Load and filter dataset/model data."""
logger.info(f"Loading data from {dataset_id}")
ds = load_dataset(dataset_id, split="train")
df = ds.to_polars().lazy()
# Extract content after YAML frontmatter
df = df.with_columns(
[
pl.col("card")
.str.replace_all(r"^---\n[\s\S]*?\n---\n", "", literal=False)
.str.strip_chars()
.alias("post_yaml_content")
]
)
# Apply filters
df = df.filter(pl.col("post_yaml_content").str.len_bytes() > 200)
df = df.filter(pl.col("post_yaml_content").str.len_bytes() < 120_000)
if card_type == "model":
df = df.filter(pl.col("likes") >= min_likes)
df = df.filter(pl.col("downloads") >= min_downloads)
df_filtered = df.collect()
logger.info(f"Filtered dataset has {len(df_filtered)} items")
return df_filtered
def generate_summaries(
model_id: str,
input_dataset_id: str,
output_dataset_id: str,
card_type: str = "dataset",
max_tokens: int = 120,
temperature: float = 0.6,
batch_size: int = 1000,
min_likes: int = 1,
min_downloads: int = 1,
hf_token: Optional[str] = None,
):
"""Main function to generate summaries."""
# Login if token provided
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Load and filter data
df_filtered = load_and_filter_data(
input_dataset_id, card_type, min_likes, min_downloads
)
# Download model to local directory first
logger.info(f"Downloading model {model_id} to local directory...")
local_model_path = snapshot_download(repo_id=model_id, resume_download=True)
logger.info(f"Model downloaded to: {local_model_path}")
# Initialize model and tokenizer from local path
logger.info(f"Initializing vLLM model from local path: {local_model_path}")
llm = LLM(model=local_model_path)
tokenizer = AutoTokenizer.from_pretrained(local_model_path)
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
)
# Prepare prompts
logger.info("Preparing prompts")
post_yaml_contents = df_filtered["post_yaml_content"].to_list()
prompts = [
format_prompt(content, card_type, tokenizer)
for content in tqdm(post_yaml_contents, desc="Formatting prompts")
]
# Generate summaries in batches
logger.info(f"Generating summaries for {len(prompts)} items")
all_outputs = []
for i in tqdm(range(0, len(prompts), batch_size), desc="Generating summaries"):
batch_prompts = prompts[i : i + batch_size]
outputs = llm.generate(batch_prompts, sampling_params)
all_outputs.extend(outputs)
# Extract clean results
clean_results = [output.outputs[0].text.strip() for output in all_outputs]
# Create dataset and add summaries
ds = Dataset.from_polars(df_filtered)
ds = ds.add_column("summary", clean_results)
# Push to hub
logger.info(f"Pushing dataset to hub: {output_dataset_id}")
ds.push_to_hub(output_dataset_id, token=HF_TOKEN)
logger.info("Dataset successfully pushed to hub")
def main():
parser = argparse.ArgumentParser(
description="Generate summaries for Hugging Face datasets or models using vLLM"
)
parser.add_argument(
"model_id",
help="Model ID for summary generation (e.g., davanstrien/SmolLM2-135M-tldr-sft-2025-03-12_19-02)",
)
parser.add_argument(
"input_dataset_id",
help="Input dataset ID (e.g., librarian-bots/dataset_cards_with_metadata)",
)
parser.add_argument(
"output_dataset_id", help="Output dataset ID where results will be saved"
)
parser.add_argument(
"--card-type",
choices=["dataset", "model"],
default="dataset",
help="Type of cards to process (default: dataset)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=120,
help="Maximum tokens for summary generation (default: 120)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.6,
help="Temperature for generation (default: 0.6)",
)
parser.add_argument(
"--batch-size",
type=int,
default=1000,
help="Batch size for processing (default: 1000)",
)
parser.add_argument(
"--min-likes",
type=int,
default=1,
help="Minimum likes filter for models (default: 1)",
)
parser.add_argument(
"--min-downloads",
type=int,
default=1,
help="Minimum downloads filter for models (default: 1)",
)
parser.add_argument(
"--hf-token", help="Hugging Face token (uses HF_TOKEN env var if not provided)"
)
args = parser.parse_args()
generate_summaries(
model_id=args.model_id,
input_dataset_id=args.input_dataset_id,
output_dataset_id=args.output_dataset_id,
card_type=args.card_type,
max_tokens=args.max_tokens,
temperature=args.temperature,
batch_size=args.batch_size,
min_likes=args.min_likes,
min_downloads=args.min_downloads,
hf_token=args.hf_token,
)
if __name__ == "__main__":
if len(sys.argv) == 1:
# Show example hfjobs command when run without arguments
print("Example hfjobs command:")
print(
"hfjobs run --flavor l4x1 --secret HF_TOKEN=hf_*** ghcr.io/astral-sh/uv:debian /bin/bash -c '"
)
print("apt-get update && apt-get install -y python3-dev gcc && \\")
print("export HOME=/tmp && \\")
print("export USER=dummy && \\")
print("export TORCHINDUCTOR_CACHE_DIR=/tmp/torch-inductor && \\")
print("uv run generate_summaries_uv.py \\")
print(" davanstrien/Smol-Hub-tldr \\")
print(" librarian-bots/dataset_cards_with_metadata \\")
print(" your-username/datasets_with_summaries \\")
print(" --card-type dataset \\")
print(" --batch-size 2000")
print("' --project summary-generation --name dataset-summaries")
print()
print("For models:")
print("uv run generate_summaries_uv.py \\")
print(" davanstrien/SmolLM2-135M-tldr-sft-2025-03-12_19-02 \\")
print(" librarian-bots/model_cards_with_metadata \\")
print(" your-username/models_with_summaries \\")
print(" --card-type model \\")
print(" --min-likes 5 \\")
print(" --min-downloads 1000")
else:
main()
|