Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
2057a2c
1
Parent(s):
2d844f4
chore: Refactor main.py for improved readability and maintainability
Browse files
main.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List
|
2 |
+
from contextlib import asynccontextmanager
|
3 |
+
from fastapi import FastAPI, HTTPException, Query
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import chromadb
|
6 |
+
import logging
|
7 |
+
from load_data import get_save_path, refresh_data
|
8 |
+
from cashews import cache
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
13 |
+
)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Set up caching
|
17 |
+
cache.setup("mem://?check_interval=10&size=10000")
|
18 |
+
|
19 |
+
# Initialize Chroma client
|
20 |
+
SAVE_PATH = get_save_path()
|
21 |
+
client = chromadb.PersistentClient(path=SAVE_PATH)
|
22 |
+
collection = client.get_collection("dataset_cards")
|
23 |
+
|
24 |
+
|
25 |
+
class QueryResult(BaseModel):
|
26 |
+
dataset_id: str
|
27 |
+
similarity: float
|
28 |
+
|
29 |
+
|
30 |
+
class QueryResponse(BaseModel):
|
31 |
+
results: List[QueryResult]
|
32 |
+
|
33 |
+
|
34 |
+
@asynccontextmanager
|
35 |
+
async def lifespan(app: FastAPI):
|
36 |
+
# Startup: refresh data
|
37 |
+
logger.info("Starting up the application")
|
38 |
+
try:
|
39 |
+
refresh_data()
|
40 |
+
logger.info("Data refresh completed successfully")
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Error during data refresh: {str(e)}")
|
43 |
+
|
44 |
+
yield # Here the app is running and handling requests
|
45 |
+
|
46 |
+
# Shutdown: perform any cleanup
|
47 |
+
logger.info("Shutting down the application")
|
48 |
+
# Add any cleanup code here if needed
|
49 |
+
|
50 |
+
|
51 |
+
app = FastAPI(lifespan=lifespan)
|
52 |
+
|
53 |
+
|
54 |
+
@app.get("/query", response_model=Optional[QueryResponse])
|
55 |
+
@cache(ttl="1h")
|
56 |
+
async def api_query_dataset(dataset_id: str, n: int = Query(default=10, ge=1, le=100)):
|
57 |
+
try:
|
58 |
+
logger.info(f"Querying dataset: {dataset_id}")
|
59 |
+
# Get the embedding for the given dataset_id
|
60 |
+
result = collection.get(ids=[dataset_id], include=["embeddings"])
|
61 |
+
|
62 |
+
if not result["embeddings"]:
|
63 |
+
logger.info(f"Dataset not found: {dataset_id}")
|
64 |
+
raise HTTPException(status_code=404, detail="Dataset not found")
|
65 |
+
|
66 |
+
embedding = result["embeddings"][0]
|
67 |
+
|
68 |
+
# Query the collection for similar datasets
|
69 |
+
query_result = collection.query(
|
70 |
+
query_embeddings=[embedding], n_results=n, include=["distances"]
|
71 |
+
)
|
72 |
+
|
73 |
+
if not query_result["ids"]:
|
74 |
+
logger.info(f"No similar datasets found for: {dataset_id}")
|
75 |
+
return None
|
76 |
+
|
77 |
+
# Prepare the response
|
78 |
+
results = [
|
79 |
+
QueryResult(dataset_id=id, similarity=1 - distance)
|
80 |
+
for id, distance in zip(
|
81 |
+
query_result["ids"][0], query_result["distances"][0]
|
82 |
+
)
|
83 |
+
]
|
84 |
+
|
85 |
+
logger.info(f"Found {len(results)} similar datasets for: {dataset_id}")
|
86 |
+
return QueryResponse(results=results)
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Error querying dataset {dataset_id}: {str(e)}")
|
90 |
+
raise HTTPException(status_code=500, detail=str(e))
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
import uvicorn
|
95 |
+
|
96 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|